数理统计的基本概念

总体和样本

总体

所 研 究 对 象 的 某 项 数 量 指 标 X 的 全 体 称 为 总 体 , 总 体 中 的 每 个 元 素 叫 个 体 所研究对象的某项数量指标X的全体称为总体,总体中的每个元素叫个体 X

样本

  1. X 1 , X 2 , X 3 , . . . . , X n , 相 互 独 立 且 与 总 体 X 同 分 布 , 则 称 X 1 , X 2 , X_1,X_2,X_3,....,X_n,相互独立且与总体X同分布,则称X_1,X_2, X1,X2,X3,....,XnXX1,X2, X 3 , . . . . , X n 为 来 自 总 体 X 的 简 单 随 机 样 本 , x 1 , x 2 , x 3 , . . . . , x n 为 X_3,....,X_n为来自总体X的简单随机样本,x_1,x_2,x_3,....,x_n为 X3,....,XnXx1,x2,x3,....,xn 样 本 值 样本值
  2. 若 X 的 分 布 为 F ( x ) , 则 样 本 X 1 , X 2 , X 3 , . . . . , X n 的 分 布 为 若X的分布为F(x),则样本 X_1,X_2,X_3,....,X_n的分布为 XF(x)X1,X2,X3,....,Xn
    F ( x 1 , x 2 , x 3 , . . . . , x n ) = F ( x 1 ) F ( x 2 ) F ( x 3 ) . . . . . . F ( x n ) = ∏ i = 1 n F ( x i ) F(x_1,x_2,x_3,....,x_n)=F(x_1)F(x_2)F(x_3)......F(x_n)=\prod \limits_{i=1}^nF(x_i) F(x1,x2,x3,....,xn)=F(x1)F(x2)F(x3)......F(xn)=i=1nF(xi)
  3. 若 X 的 概 率 密 度 为 f ( x ) , 则 样 本 X 1 , X 2 , X 3 , . . . . , X n 的 概 率 密 度 为 若X的概率密度为f(x),则样本 X_1,X_2,X_3,....,X_n的概率密度为 Xf(x)X1,X2,X3,....,Xn
    f ( x 1 , x 2 , x 3 , . . . . , x n ) = f ( x 1 ) f ( x 2 ) f ( x 3 ) . . . . . . f ( x n ) = ∏ i = 1 n f ( x i ) f(x_1,x_2,x_3,....,x_n)=f(x_1)f(x_2)f(x_3)......f(x_n)=\prod \limits_{i=1}^nf(x_i) f(x1,x2,x3,....,xn)=f(x1)f(x2)f(x3)......f(xn)=i=1nf(xi)
  4. 若 X 的 分 布 P { X = k } = p k , k = 1 , 2 , . . . . , 则 样 本 X 1 , X 2 , 若X的分布P\left \{ X=k \right \}=p_k,k=1,2,....,则样本X_1,X_2, XP{X=k}=pkk=1,2,....X1,X2, X 3 , . . . . , X n 的 分 布 为 X_3,....,X_n的分布为 X3,....,Xn
    P { X 1 = x 1 , X 2 = x 2 , . . . . , X n = x n } = ∏ i = 1 n P { X i = x i } P\left \{ X_1=x_1, X_2=x_2,....,X_n=x_n\right \}=\prod \limits_{i=1}^nP\left \{ X_i=x_i \right \} P{X1=x1,X2=x2,....,Xn=xn}=i=1nP{Xi=xi}

统计量和样本数字特征

统计量T

  1. 样 本 X 1 , X 2 , X 3 , . . . . , X n , 为 观 测 前 的 随 机 变 量 , T = T ( X 1 , X 2 , X 3 , . . . . , X n ) 为 不 含 未 知 参 数 的 函 数 , 这 种 函 数 称 为 统 计 量 样本X_1,X_2,X_3,....,X_n,为观测前的随机变量,T=T(X_1,X_2,X_3,....,X_n)为不含未知参数的函数,这种函数称为统计量 X1,X2,X3,....,XnT=T(X1,X2,X3,....,Xn)
  2. x 1 , x 2 , x 3 , . . . . , x n 为 观 测 后 的 样 本 值 ( 具 体 实 数 ) , T ( x 1 , x 2 , x 3 , . . . . , x n ) 为 x_1,x_2,x_3,....,x_n为观测后的样本值(具体实数),T(x_1,x_2,x_3,....,x_n)为 x1,x2,x3,....,xn()T(x1,x2,x3,....,xn) 统 计 量 T ( X 1 , X 2 , X 3 , . . . . , X n ) 的 观 测 值 统计量 T(X_1,X_2,X_3,....,X_n)的观测值 T(X1,X2,X3,....,Xn)

样本数字特征

  1. 样 本 均 值 X ‾ = 1 n ∑ i = 1 n X i 样本均值\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i X=n1i=1nXi
  2. 样 本 方 差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 样本方差S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 S2=n11i=1n(XiX)2
    从 总 体 中 抽 取 部 分 样 本 , 利 用 部 分 样 本 的 方 差 来 估 计 总 体 方 差 从总体中抽取部分样本,利用部分样本的方差来估计总体方差 , 前 提 条 件 就 是 满 足 E ( S 2 ) = σ 2 , 即 部 分 样 本 方 差 S 2 是 总 体 方 差 σ 2 的 ,前提条件就是满足E(S^2)=\sigma^2,即部分样本方差S^2是总体方差\sigma^2的 ,E(S2)=σ2S2σ2 无 偏 估 计 量 无偏估计量
  3. 样 本 标 准 差 S = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 样本标准差S=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2} S=n11i=1n(XiX)2

常用统计抽样分布和正态总体抽样分布

χ 2 分 布 \chi^2分布 χ2

设 X 1 , X 2 , X 3 , . . . . , X n , 相 互 独 立 且 服 从 标 准 正 态 分 布 N ( 0 , 1 ) 设X_1,X_2,X_3,....,X_n,相互独立且服从标准正态分布N(0,1) X1,X2,X3,....,XnN(0,1) , 则 称 随 机 变 量 服 从 自 由 度 为 n 的 χ 2 分 布 , 记 作 χ 2 ,则称随机变量服从自由度为n的\chi^2分布,记作\chi^2 nχ2χ2~ χ 2 ( n ) \chi^2(n) χ2(n)
χ 2 = χ 1 2 + χ 2 2 + χ 3 2 + . . . . + χ n 2 \chi^2=\chi_1^2+\chi_2^2+\chi_3^2+....+\chi_n^2 χ2=χ12+χ22+χ32+....+χn2

χ 2 分 布 性 质 \chi^2分布性质 χ2

  1. 设 χ 2 设\chi^2 χ2~ χ 2 ( n ) , 对 于 给 定 的 a , 0 ( < a < 1 ) , 满 足 : \chi^2(n),对于给定的a,0(<a<1),满足: χ2(n)a0(<a<1)
    P { χ 2 > χ a 2 ( n ) } = ∫ χ a 2 ( n ) + ∞ f ( x ) d x = a , P\left \{\chi^2>\chi_{a}^2(n) \right\}=\int_{\chi_{a}^2(n)}^{+\infty}f(x)dx=a, P{χ2>χa2(n)}=χa2(n)+f(x)dx=a χ a 2 ( n ) 为 χ 2 ( n ) 分 布 的 上 a 分 位 点 \chi_{a}^2(n)为\chi^2(n)分布的上a分位点 χa2(n)χ2(n)a
  2. 设 χ 2 设\chi^2 χ2~ χ 2 ( n ) , 则 E ( χ 2 ) = n , D ( χ 2 ) = 2 n \chi^2(n),则E(\chi^2)=n,D(\chi^2)=2n χ2(n)E(χ2)=nD(χ2)=2n
  3. χ 1 2 \chi_{1}^2 χ12~ χ 1 2 ( n 1 ) , \chi_{1}^2(n_1), χ12(n1) χ 1 2 \chi_{1}^2 χ12~ χ 2 2 ( n 2 ) , χ 1 2 与 χ 2 2 相 互 独 立 , 则 χ 1 2 + χ 2 2 \chi_{2}^2(n_2),\chi_{1}^2与\chi_{2}^2相互独立,则\chi_{1}^2+\chi_{2}^2 χ22(n2)χ12χ22χ12+χ22 ~ χ 2 ( n 1 + n 2 ) \chi^2(n_1+n_2) χ2(n1+n2)

t分布

设 随 机 变 量 X , Y 相 互 独 立 , 且 X 设随机变量X,Y相互独立,且X X,YX~ N ( 0 , 1 ) , Y N(0,1),Y N(0,1)Y~ χ 2 ( n ) , 则 称 随 机 变 量 \chi^2(n),则称随机变量 χ2(n)
T = X Y n = X χ 2 ( n ) n , 服 从 自 由 度 为 n 的 T 分 布 , 记 作 T T=\frac{X}{\sqrt{\frac{Y}{n}}}=\frac{X}{\sqrt{\frac{\chi^2(n)}{n}}},服从自由度为n的T分布,记作T T=nY X=nχ2(n) XnTT~ t ( n ) t(n) t(n)

t分布性质

  1. t 分 布 的 概 率 密 度 f ( x ) 是 偶 函 数 , 当 n 充 分 大 时 , t ( n ) 分 布 近 似 N ( 0 , 1 ) t分布的概率密度f(x)是偶函数,当n充分大时,t(n)分布近似N(0,1) tf(x)nt(n)N(0,1)
  2. 设 T 设T T~ t ( n ) , 对 于 给 定 的 a , 0 ( < a < 1 ) , 满 足 : t(n),对于给定的a,0(<a<1),满足: t(n)a0(<a<1)
    P { T > t a ( n ) } = ∫ t a ( n ) + ∞ f ( x ) d x = a , P\left \{T>t_a(n) \right\}=\int_{t_a(n) }^{+\infty}f(x)dx=a, P{T>ta(n)}=ta(n)+f(x)dx=a t a ( n ) 为 t ( n ) 分 布 的 上 a 分 位 点 t_a(n) 为t(n) 分布的上a分位点 ta(n)t(n)a
  3. 由 于 t ( n ) 分 布 为 偶 函 数 , 可 知 t 分 布 的 双 侧 a 分 位 点 t a / 2 ( n ) , 即 由于t(n)分布为偶函数,可知t分布的双侧a分位点t_{a/2}(n),即 t(n)tata/2(n)
    P { ∣ T ∣ > t a / 2 ( n ) } = a P\left \{ |T|> t_{a/2}(n)\right \}=a P{T>ta/2(n)}=a

F分布

设 随 机 变 量 X , Y 相 互 独 立 , 且 X 设随机变量X,Y相互独立,且X X,YX~ χ 2 ( n 1 ) , Y \chi^2(n_1),Y χ2(n1)Y~ χ 2 ( n 2 ) , 则 称 随 机 变 量 \chi^2(n_2),则称随机变量 χ2(n2)
F = X n 1 Y n 2 = χ 2 ( n 1 ) n 1 χ 2 ( n 2 ) n 2 , 服 从 自 由 度 为 ( n 1 , n 2 ) 的 F 分 布 , 记 作 F F=\frac{\frac{X}{n_1}}{\frac{Y}{n_2}}=\frac{\frac{\chi^2(n_1)}{n_1}}{\frac{\chi^2(n_2)}{n_2}},服从自由度为(n_1,n_2)的F分布,记作F F=n2Yn1X=n2χ2(n2)n1χ2(n1)(n1,n2)FF~ F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)

F分布性质

  1. 设 F 设F F~ F ( n 1 , n 2 ) , 对 于 给 定 的 a , 0 ( < a < 1 ) , 满 足 : F(n_1,n_2),对于给定的a,0(<a<1),满足: F(n1,n2)a0(<a<1) P { F > F ( n 1 , n 2 ) } = ∫ F a ( n 1 , n 2 ) + ∞ f ( x ) d x = a , 则 称 P\left \{F>F(n_1,n_2)\right\}=\int_{F_a(n_1,n_2)}^{+\infty}f(x)dx=a,则称 P{F>F(n1,n2)}=Fa(n1,n2)+f(x)dx=a F a ( n 1 , n 2 ) 为 F ( n 1 , n 2 ) 分 布 的 上 a 分 位 点 F_a(n_1,n_2)为F(n_1,n_2)分布的上a分位点 Fa(n1,n2)F(n1,n2)a
  2. 如 果 F 如果F F~ F ( n 1 , n 2 ) , 则 1 F ( n 1 , n 2 ) F(n_1,n_2),则\frac{1}{F(n_1,n_2)} F(n1,n2)F(n1,n2)1~ F ( n 2 , n 1 ) , 且 有 F(n_2,n_1),且有 F(n2,n1)
    F 1 − a ( n 1 , n 2 ) = 1 F a ( n 2 , n 1 ) F_{1-a}(n_1,n_2)=\frac{1}{F_a(n_2,n_1)} F1a(n1,n2)=Fa(n2,n1)1

一个正态总体的抽样分布

设 正 态 总 体 X 设正态总体X X~ N ( μ , σ 2 ) , X 1 , X 2 , X 3 , . . . , X n , 是 来 自 总 体 的 样 本 , N(\mu,\sigma^2),X_1,X_2,X_3,...,X_n,是来自总体的样本, N(μ,σ2)X1,X2,X3,...,Xn, 样 本 均 值 为 X ˉ , 样本均值为\bar{X}, Xˉ 样 本 方 差 为 S 2 , 则 有 样本方差为S^2,则有 S2
18. X ‾ \overline{X} X~ N ( μ , σ 2 n ) , U = X ‾ − μ σ n N(\mu,\frac{\sigma^2}{n}),U=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} N(μ,nσ2)U=n σXμ ~ N ( 0 , 1 ) N(0,1) N(0,1)
19. X ‾ 与 S 2 相 互 独 立 , 且 χ 2 = ( n − 1 ) S 2 σ 2 \overline{X}与S^2相互独立,且\chi^2=\frac{(n-1)S^2}{\sigma^2} XS2χ2=σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)
20. T = X ‾ − μ S n T=\frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}} T=n SXμ ~ t ( n − 1 ) t(n-1) t(n1)
21. F = T 2 = ( X ‾ − μ S n ) 2 F=T^2=(\frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}})^2 F=T2=(n SXμ)2 ~ F ( n − 1 ) F(n-1) F(n1)
22. χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) \chi^2=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\mu) χ2=σ21i=1n(Xiμ)~ χ 2 ( n ) \chi^2(n) χ2(n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值