随机事件与概率

本文深入探讨了概率论中的核心概念,包括随机试验、样本空间及其子集——随机事件。阐述了事件的关系与运算,如包含、互斥、独立等,并介绍了全概率公式和贝叶斯公式在计算条件概率中的应用。此外,还强调了完备事件组在概率计算中的重要性。
摘要由CSDN通过智能技术生成

随机事件与样本空间

  1. 随机试验:对随机现象进行试验
  2. 样本空间:随机试验的每一种可能的结果叫样本点,记作 ω \omega ω。所有样本点的集合叫做样本空间,记作 Ω \Omega Ω, ω \omega ω ϵ \epsilon ϵ Ω \Omega Ω
  3. 样本空间的子集称为随机事件,随机事件由样本点组成,把 Ω \Omega Ω看成一个事件,每次试验中必有一个基本事件发生,叫做必然事件。 ∅ \varnothing 为不可能事件

事件的关系和运算

  1. 事件A发送必然导致事件B发生,则 A ⊂ B A\subset B AB
  2. A ⊂ B A \subset B AB B ⊃ A B \supset A BA同时发生,记作 A = B A=B A=B
  3. A B = ∅ AB= \varnothing AB=, A A A B B B同时发送是不能事件,则事件 A A A与事件 B B B是互斥或者互不相容。
  4. n n n个事件A1,A2,…,An-1,An中任意两个事件均互斥,
    AiAj= ∅ \varnothing i , j = 1 , 2 , 3 , . . . . . n i,j=1,2,3,.....n i,j=1,2,3,.....n,则称n个事件两两互斥或者两两互不相容
  5. 若有限个事件满足AiAj= ∅ \varnothing ,i,j=1,2,3,…n,且 ∪ i = 1 n \mathop{\cup}\limits_{i=1}^n i=1nAi,则称A1,A2,…,An-1,An Ω \Omega Ω的一个完备事件组

概率与事件

  1. 对于两两互斥的事件A1,A2,…,An-1,An
    有P(A1 ∪ \cup A2 ∪ \cup ∪ \cup An-1 ∪ \cup An)=P(A1)+P(A2)+P(A1)+…+P(An)
  2. A ⊂ B A \subset B AB ,则 P ( A ) ⩽ P ( B ) P(A) \leqslant P(B) P(A)P(B)
  3. P ( A ) > 0 P(A)>0 P(A)>0, P ( B P(B P(B ∣ \mid A A A)= P ( A B ) P ( A ) \frac{P(AB)}{P(A)} P(A)P(AB),事件 A A A发生条件下事件 B B B发生的条件概率,l或者 P ( A ) P ( B P(A)P(B P(A)P(B ∣ \mid A ) = P ( A B ) A)=P(AB) A)=P(AB),事件 A A A与事件 B B B同时发生的概率
  4. A,B独立 ⇌ \rightleftharpoons P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
  5. P ( A P(A P(A ∪ \cup B B B ∪ \cup C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
  6. A ∪ B ˉ \bar{A \cup B } ABˉ = = = A ˉ \bar{A} Aˉ ∩ B ˉ \cap\bar{B} Bˉ A ∩ B ˉ \bar{A \cap B } ABˉ = = = A ˉ \bar{A} Aˉ ∪ B ˉ \cup\bar{B} Bˉ A − B ˉ \bar{A-B } ABˉ = = = A ˉ \bar{A} Aˉ ∪ B \cup B B
  7. 全概率公式:设B1,B2,B3,…,Bn-1,Bn,为 Ω \Omega Ω的概率均不为0的一个完备事件组,
    对于任意的事件 A A A,有 P ( A ) = P(A)= P(A)= ∑ i = 1 n P ( B \mathop{\sum}\limits_{i=1}^nP(B i=1nP(Bi ) P ( A ∣ )P(A\mid )P(A B B Bi ) ) )
    证明:若事件 A A A Ω \Omega Ω独立,则 ∑ i = 1 n P ( B \mathop{\sum}\limits_{i=1}^nP(B i=1nP(Bi ) P ( A ∣ )P(A\mid )P(A B B Bi ) = P ( A ) )=P(A) )=P(A) ∑ i = 1 n P ( B   i   ) = P ( A ) \mathop{\sum}\limits_{i=1}^nP(B~i~)=P(A) i=1nP(B i )=P(A)
    若事件A与 Ω \Omega Ω不独立,即 A ⊂ Ω A\subset \Omega AΩ ∑ i = 1 n P ( B \mathop{\sum}\limits_{i=1}^nP(B i=1nP(Bi ) P ( A ∣ )P(A\mid )P(A B B Bi ) = P ( A B )=P(AB )=P(AB1 ) + P ( A B )+P(AB )+P(AB2 ) + . . . . . + P ( A B )+.....+P(AB )+.....+P(ABn-1 ) + P ( A B )+P(AB )+P(ABn ) = P ( A Ω ) = P ( A ) )=P(A\Omega)=P(A) )=P(AΩ)=P(A)
  8. 贝叶斯公式:设B1,B2,B3,…,Bn-1,Bn,为 Ω \Omega Ω的概率不为0的一个完备事件组,对于任意的事件A,且 P ( A ) > 0 P(A)>0 P(A)>0,有
    P ( B P(B P(Bj ∣ \mid A ) = A)= A)= P ( B   j   ) P ( A ∣ B   j   ) ∑ i = 1 n P ( B   i   ) P ( A ∣ B   i   ) \frac{P(B~j~)P(A \mid B~j~)}{\displaystyle\sum_{i=1}^{n}P(B~i~)P(A \mid B~i~)} i=1nP(B i )P(AB i )P(B j )P(AB j ) = P ( B   j   ) P ( A ∣ B   j   ) P ( A ) =\frac{P(B~j~)P(A \mid B~j~)}{P(A)} =P(A)P(B j )P(AB j ) j = 1 , 2 , 3...... , n j=1,2,3......,n j=1,2,3......,n
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值