论文阅读—过程运行状态精细识别的静态与动态同步分析

作者信息:
作者信息

Abstract

闭环控制通常用于工业过程跟踪设定值或者调节过程干扰。闭环控制的过程动态结果反应在数据上主要有两个方面,被称为时序相关和响应速度的变化。从数据中对两个方面的同步分析还没有在文献中得到充分的研究。在本工作中,提出了一个综合规范变量分析(CVA)和慢特征分析(SFA)的策略,通过同时探究时序行关性和过程数据变化的速度,用于监测由闭环控制引起的过程动态结果。首先,基于最大化过程数据中过去和未来特征值相关性, 建立反应时序相关性的正则子空间模型。然后,进一步探究时序相关正则子空间和其残差子空间,用于进一步提取用于表征过程变化速度的慢特征。所提出的方法提供了在考虑闭环控制下过程动态的有意义的物理解释和深入的过程分析。此外,其提供了过程故障和操作状态偏离的同步监测,从而可以对不同操作状态进行精细尺度识别。
为证明可能性和有效性,所提出的方法在典型闭环控制化工仿真过程,即三相流过程中进行了测试。
在这里插入图片描述

Index Terms

Canonical variate analysis (CVA), 规范变量分析
closed-loop control, 闭环控制
fine-scale identification, 精细尺度识别
process dynamics, 过程动态
slow feature analysis (SFA). 慢特征分析

I. INTRODUCTION(引言)

过程监控对于维护工业过程安全和提高产品质量至关重要。随着传感器的快速发展,各种数据驱动的多元统计过程监测(MSPM)方法[1]-[4]在过去的几十年里得到了广泛的研究和应用。在MSPM方法中,主成分分析(PCA)是应用最广泛的方法,因为它能够通过将数据投影到较低维的子空间来处理高维和高度相关的数据[5],[6]。
尽管PCA已被广泛用于故障检测,但它们在假设不成立的情况下表现不佳。例如,PCA在非高斯过程中表现出非常差的监测性能,因为它在计算监测统计量的控制极限时采用了高斯假设。此外,PCA只挖掘过程数据的均值和协方差等二阶信息,在非高斯过程中无法提供高阶信息。PCA还要求变量是线性相关的,工业过程是在一个唯一的条件下运行,然而,在许多真实的工业过程中,这是不能满足的。因此,提出了许多其他基于数据的技术来处理故障检测中的不同问题[7]-[9]。为了解决实际工业过程中的非线性特性,人们研究了许多非线性方法。例如,Dong和McAvoy[10]开发了一种基于pca的非线性方法,将主曲线与神经网络(NN)相结合。Eslamloueyan[11]设计了一种基于层次神经网络的故障诊断方法,并在TE过程中进行了测试。除了上述问题外,针对实际流程中的一些具体问题,也提出了许多解决方法[12]-[16]。其中,过程动力学被考虑和重要的特性被处理。为了处理数据中的动态性,采用时滞移位 技术发展了动态主成分分析(dynamic principal component analysis, DPCA)等动态技术[17],[18]。除了DPCA之外,还开发了一些基于状态空间 的方法,如典型变量分析(CVA)来对动态过程进行建模。基于cva的方法通过最大化系统“过去”值和“未来”值之间的相关性,从时间相关数据中生成状态空间模型[19]-[21]。
尽管传统的MSPM方法已被广泛用于处理复杂系统,但这些方法大多局限于常规的过程操作,只能判断过程是否与参考状态不同。换句话说,任何偏离参考运行工况的情况,无论是在不同运行工况之间的正常移位,还是真正的故障,都可能被常规方法视为异常。为了解决这一问题,采用基于慢特征分析(slow feature analysis, SFA)的故障检测方法来检测动态异常和运行状态偏差[22]-[25]。作为一种无监督降维方法,SFA可以将x的位置分布和x的速度分布P( x ˙ \mathtt{\dot{x}} x˙)的描述分离开来。通过SFA提取的以不同速度为特征的慢特征(SFs) s \textbf s s可以捕捉多变量过程变量的动态变化。由SFs s ˙ {\dot{\textbf s}} s˙的时差分布捕捉到的P( x ˙ \mathtt{\dot{x}} x˙)分布可以用来表示过程动力学。这样,就可以根据P(x)识别条件偏差,并通过分析P( x ˙ \mathtt{\dot{x}} x˙)来检测过程动力学中的异常[22]。通过同时分析P(x)和P( x ˙ \mathtt{\dot{x}} x˙),将正常运行状态偏差与故障区分开来。
然而,上述方法大多更适合于开环过程,而不考虑控制作用的影响。闭环控制在工业过程中常用来跟踪设定值或调节过程扰动,这可能给数据驱动的过程监控带来许多挑战[26]。Pranatyasto和Qin[27]提出了一种基于pca的传感器故障检测方法来检测控制反馈的复杂性。Gertler和Cao[26]在PCA的基础上研究了控制的效果。McNabb和Qin[28]开发了一种基于PCA的闭环过程故障诊断方法。Ohran等人[29]试图通过控制器设计来增强数据驱动的故障检测。Wan和Ye[30]提出了一种数据驱动的诊断方法来分析控制回路内的精密传感器故障。然而,PCA是一个静态模型,不能处理数据中的动态特征。实际上,由于反馈控制,输出变量之间的相关性可以反馈给部分或全部输入变量[16]。由于设备的固有特性和闭环控制,当前时间的过程测量可能与过去的观测相关联。一些动态方法如DPCA被用于分析实际过程中闭环下的序列相关性[17],[19]。然而,过程动力学可以是多种多样的,这不仅仅局限于序列相关性。Shang等[31]开发了基于sfa的控制性能监测方法,该方法对影响过程变化的故障更为敏感。上述常规方法大多不考虑控制作用,无法提取出真实闭环过程的完整动态信息。因此,需要详细分析闭环控制如何影响过程行为,并定义新的与控制效果相关的监控统计量,以便在闭环控制下提供更可靠的故障检测。
本文首先探讨了控制作用对过程行为的影响。然后,通过对闭环控制下过程动力学的完整解释,提出了一种CVA-SFA组合监测方案,用于不同过程状态的精细识别。首先,利用CVA方法挖掘过程数据中的序列相关性,将过程变量划分为正则空间和残差空间两个子空间;然后,采用SFA对两个子空间中的静态和时间分布进行提取,这两个子空间揭示了过程变量的变化速度。本工作的主要贡献总结如下:
1)从数据驱动的角度对闭环控制下的过程动力学进行了完整的解释,其中对序列相关和变量速度变化两类动力学进行了充分的建模。
2)对过程的静态行为和时间行为进行了分析和监测,为精细尺度识别闭环控制下过程运行状态的变化提供了有意义的解释。
本文的其余部分组织如下。第二节介绍了CVA和SFA的初步研究。然后,第三节详细介绍了基于CVA和SFA的方法。在第四节中,对三相流设备进行了演示。最后,第五部分给出了本文的结论。

II. PRELIMINARIES(预备知识)

A. CVA

CVA是一种线性降维方法,它采用过去和未来向量的概念,最大化两个选定变量集之间的相关性[20],[23]。考虑数据 y ( t ) ∈ R J y_{(t)}\mathbb∈R^J y(t)RJ,定义包含过去数据的过去向量 y p ( t ) y_{p(t)} yp(t)
在这里插入图片描述
包含当前和未来观测值的未来向量 y f ( t ) y_f (t) yf(t)表示为:
在这里插入图片描述
式中 l l l h h h 为滞后数,一般情况下 l ≥ h l≥h lh
首先将两个向量 y p ( t ) yp(t) yp(t) y f ( t ) yf (t) yf(t)归一化为零均值和零单位方差。然后,通过排列向量来定义过去和未来矩阵,如下所示[32]:
在这里插入图片描述
其中,对于有N个数据样本的数据集, N 1 = N − l − h + 1 N1 = N−l−h + 1 N1=Nlh+1。奇异值分解(SVD)可用于解决CVA中使过去和未来变量集的相关性最大化的优化问题[33]。
在这里插入图片描述
其中,矩阵 Σ p p = c o v ( Y p , Y p ) , Σ f f = c o v ( Y f , Y f ) , Σ p f = c o v ( Y p , Y f ) Σpp = cov(Yp, Yp), Σf f = cov(Yf, Yf), Σpf = cov(Yp, Yf) Σpp=cov(Yp,Yp)Σff=cov(Yf,Yf)Σpf=cov(Yp,Yf);
由奇异向量组成的U和V正交且仅成对相关[32]; Λ Λ Λ为典型相关系数 γ 1 ≥ ⋅ ⋅ ⋅ ≥ γ r γ_1≥···≥γ_r γ1⋅⋅⋅γr的对角矩阵。
假设状态阶为 k k k,则变换矩阵 J J J L L L定义如下:
在这里插入图片描述
其中矩阵 U k U_k Uk包含 U ∗ U* U的前 k k k列,状态向量和残差向量可由下式得到:
在这里插入图片描述

B. SFA

SFA是一种降维技术,试图通过最小化时间变化来提取SFs[34]。换句话说,SFA旨在找到缓慢变化的组件,使得 Δ ( s j ) Δ(sj) Δ(sj)是最小值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
其中 s d s_d sd包含 r r r个缓慢变化的SFs, s e s_e se由快速变化的残差组成。确定 r r r的标准的详细信息可以在[35]中找到。

III. METHODOLOGY(研究方法)

A. Problem Statement(问题阐述)

在工业过程中,闭环控制被广泛应用于补偿扰动、保证过程安全、追求利润最大化。对于闭环驱动,控制以复杂的方式修改过程变量的行为。考虑一个闭环控制下的简单线性系统
在这里插入图片描述
其中 x ( t ) x(t) x(t)为过程状态, u ( t ) u(t) u(t)为控制输入, y ( t ) y(t) y(t)为输出测量值; W ( t ) W (t) W(t) v ( t ) v(t) v(t)为白噪声; B B B C C C是系统矩阵。
以最简单的 P P P控制为例,控制输入可设为
在这里插入图片描述

其中 e ( t ) = y s e t p o i n t − y ( t ) e(t) = y_{setpoint}- y(t) e(t)=ysetpointy(t)为误差。
从(15)和(16)中,输出测量值描述为
在这里插入图片描述
如(17)所示,在真正的闭环过程中,当前时间的过程测量值与过去的观测值是相关的,因为当控制器开始动态调整过程时,输出变量之间的相关性可以反馈给部分或全部输入变量。
由式(17)可知,输出测量值的时间导数为
在这里插入图片描述
如(18)所示,在控制器的调节范围内,也可以改变过程变化的速度,以消除噪声或故障的影响。传统的方法大多侧重于处理序列相关性,而没有提取完整的动态信息。此外,一旦发生故障,反馈控制将以不同的方式移动被操纵变量,从而导致异常的过程动态行为。因此,为了提供可靠的监测结果,详细分析和理解闭环控制在正常偏离运行条件和故障情况下的反应是必不可少的,而很少从数据驱动的角度讨论这一点。
图1显示了正常和故障情况下控制动作的效果。如图1(a)所示,在阶段I过程在正常条件下运行,然后在a点运行条件发生变化。为了调节过程以适应这种变化并达到新的稳定性,控制回路开始作用于过程变量。在第二阶段,变量的序列相关性和变化速度都发生了变化。经过闭环控制器的调整后,过程在第三阶段恢复到一个新的稳定状态,该状态具有与阶段一相同或相似的动态行为图1(b)显示了实际故障存在时闭环控制的效果。过程在正常状态下开始,然后在b点发生故障。闭环控制器开始调节并拒绝阶段II的异常(在第二阶段闭环控制器开始调节并抑制异常。)。
然而,故障无法消除,过程继续表现出与阶段1不同的异常过程动态行为。
因此,需要对过程动力学进行详细分析,在闭环控制下,通过有效区分正常运行状态偏差和实际故障,提供过程状态的精细识别。
1)提取潜在变量,对过程数据中呈现的序列相关性和过程变化速度进行建模。
2)对潜在变量的静态变化和时间变化进行分析和监测,通过区分运行状态偏差和实际故障,提供更详细的过程状态信息。
在本节中,提出了一种组合的CVA-SFA监测方案来解释闭环控制下的各种过程动态。在第一步中执行CVA的目的是利用时间滞后技术来探索序列相关性。在第二步中使用SFA可以提取过程变化的速度变化。该组合可以同时检测状态偏差和动态异常,同时提供控制动作的实时评估。

图1 控制动作说明(a)操作状态变化 (b)真实故障
图1 控制动作说明(a)操作状态变化 (b)真实故障

B. CVA-Based Dynamic Feature Extraction(基于CVA的动态特征提取)

为了捕获过程数据之间的序列相关性,首先利用未来观测值与过去观测值的序列相关性,利用基于cva的状态识别方法对系统进行表征。给定具有J个变量和N个数据样本的训练数据矩阵X(N × J),首先在每个时间点t展开样本向量以探索序列相关性
在这里插入图片描述
采用第II-A节介绍的CVA算法,分别得到状态向量和残差向量,分别为
在这里插入图片描述
将过程分解为正则子空间Z和残差子空间e,状态向量即正则子空间中的正则相关变量表示过程相关结构。为了很好地表示过程变量的序列相关性,需要确定CVA中的三个参数,包括两个时滞和模型的阶数,即l、h和k。在这里,考虑到当时间距离大于时间滞后时,变量的序列相关性可以忽略,从而确定了时间滞后,即l和h。因此,考虑以下等式:
在这里插入图片描述
式中autocorr ( X j , p ) (Xj, p) (Xj,p)为第j个变量时滞p的自相关系数;α为满足 0 < α ≤ 0.5 0 < α≤0.5 0<α0.5的阈值。

满足条件(23)意味着具有时滞 ( l + 1 ) (l +1) (l+1)的自相关系数小于前1个时滞的平均自相关系数。因此,确定时滞 l l l为满足条件(23)的最小值。一般来说,过去和未来时间滞后满足 l ≥ h ≥ k l≥h≥k lhk[36],[37]。在本工作中,选择未来时滞 h h h与过去时滞 l l l相同。
另一个要确定的参数是规范子空间中保留状态的数量。不适当的 k k k值将导致对过程动力学的不良探索。由于CVA最大化了典型变量之间的相关性,因此(5)中 Λ Λ Λ的典型相关系数 γ 1 ≥ ⋅ ⋅ ⋅ ≥ γ r γ_1≥···≥γ_r γ1⋅⋅⋅γr代表了相应向量之间的相关程度。因为 Λ Λ Λ是对角矩阵,所以 U U U V V V只是两两相关。因此,与PCA类似,通过累积相关解释比计算保留的典型变量的数量,即k
在这里插入图片描述
其中 β ( 0 < β < 1 ) β(0 <β< 1) β(0<β<1)为阈值。

C. SFA-Based Concurrent Monitoring(基于SFA的同步监测)

从序列相关的角度出发,在前一节中将该过程分解为两个子空间。这两个子空间提供不同的信息。正则子空间 Z \textbf Z Z表示序列相关的变化,而残差子空间 E \textbf E E类似于数学模型中的误差,通常表示序列不相关的变化。将进一步分析这两个子空间,以揭示静态和动态过程变化。正则子空间揭示了与闭环控制相关的信息,残差子空间主要揭示了与闭环控制无关的信息。因此,应该从静态和动态两方面监视这两个子空间,以实现完整的过程监视。为此,在两个子空间中执行SFA算法
在这里插入图片描述
在正则子空间(即序列相关子空间)中,考虑到SFs的慢性,将其分解为两组
在这里插入图片描述
式中, s c , d ( R c × N ) s_{c,d} (R_c × N) sc,d(Rc×N)为捕获过程变化趋势的导出的SFs; s c , e ( ( J − R c ) × N ) s_{c,e} ((J−Rc) × N) sc,e((JRc)×N)表示可以看作是短期波动的最快的波动。 R c R_c Rc的数量是根据sf比所有输入变量分配到 s c , e s_{c,e} sc,e更快的标准来确定的。关于该标准更详细的信息可以在[31]中找到。
为了测量SFs的静态变化,在 s c , d s_{c,d} sc,d s c , e s_{c,e} sc,e的基础上定义了两个 T 2 T^2 T2统计量[35]。
在这里插入图片描述
这两个统计描述了正则(自相关)空间的静态信息。一旦 T c , d 2 T^2_{ c,d} Tc,d2 T c , e 2 T^2_{ c,e} Tc,e2超过阈值,就会检测到与当前稳态的偏离。
另一方面,定义了两个统计量来捕捉基于 s ˙ c , d \dot{s}_{c,d} s˙c,d s ˙ c , e \dot{s}_{c,e} s˙c,e的过程变化速度。
在这里插入图片描述
在这里插入图片描述
这两个统计量探讨了正则子空间中动态变化的过程信息。一旦 S c , d 2 S^2_{ c,d} Sc,d2 S c , e 2 S^2_{ c,e} Sc,e2超出控制范围,就会检测到与控制性能变化相关的潜在异常。(28)和(29)中上述四种统计量的控制极限可以通过核密度估计来确定[38]。
与正则子空间不同,残差子空间中包含的残差向量没有序列相关性或序列相关性很低。这意味着大多数这些残余特征表现得像白噪声。因此,SFA提取的残差空间的所有特征都被一起分析,而不是进一步划分为慢特征和快特征。
在残差子空间中建立了两个统计量
在这里插入图片描述
在这里插入图片描述
以上两个统计描述了残差状态的信息(通常与控制无关)。一旦 T e 2 T^2_e Te2超过阈值,就会检测到偏离当前稳定状态异常。另一方面,一旦 S e 2 S_e^2 Se2超过阈值,则说明残差子空间中的过程动态行为存在潜在异常,这与过程动态变化有关。因此,在正则子空间和残差子空间中,通过不同的监测统计量来监测潜在变量的静态和时间变化,包括三个静态统计量 T c , d 2 T^2_{ c,d} Tc,d2 T c , e 2 T^2_{ c,e} Tc,e2 T e 2 T^2_e Te2,以及三个时间统计量 S c , d 2 S^2_{ c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2 S e 2 S^2_e Se2。利用这6个具有不同物理解释的监测统计数据,分别表示两个子空间中的过程状态,总结如表1所示。为了便于阅读,本文方法的建模流程图如图2所示。
表1 监测统计量描述
图2 所提方法的流程图
在这里插入图片描述

D. Online Process Monitoring Strategy(在线过程监测策略)

对于新获得的数据样本 x ˆ n e w , t \^{\mathbf x}_{new,t} xˆnew,t,在线监测策略总结如下:
步骤1:使用过去的数据 l l l x ˆ n e w , t \^{\mathbf x}_{new,t} xˆnew,t展开为一个向量。
在这里插入图片描述
步骤2:利用式(21)和式(22)定义的变换矩阵求出 x ˆ n e w , t \^{\mathbf x}_{new,t} xˆnew,t的状态向量和残差向量
在这里插入图片描述
步骤3:通过变换 W c \mathbf W_c Wc W e \mathbf W_e We x n e w , t \mathbf x_{new,t} xnew,t投影到两个子空间上得到 S F s SFs SFs
在这里插入图片描述
步骤4:计算三个统计数据来监视静态变化
在这里插入图片描述
上述三个统计信息用于监视不同子空间中参考条件的静态信息。如果它们中的任何一个超过控制极限,则在相应的子空间中存在静态偏差。
步骤5:计算三个动态统计量,用于监视两个不同子空间中的动态变化
在这里插入图片描述
其中 Ω c , d − 1 , Ω c , e − 1 , Ω e − 1 Ω^{−1}_{c,d}, Ω^{−1}_{c,e}, Ω^{−1}_e Ωc,d1Ωc,e1Ωe1为(29)和式(30)中定义的训练数据差分 S F s SFs SFs的经验协方差矩阵。
如果上述动态统计中有一项超出控制范围,则表明过程动态可能被破坏。
根据以上6个监控统计数据提供的信息,表2显示并简要总结了精细尺度的过程运行状态。分析了四个主要案例:
情况1:当6项统计量均在正常范围内时,说明工艺运行正常,控制状况良好。
情况2:如果一个或所有的时间统计量都在控制范围之外,而三个静态统计量都在各自的控制范围内,则表明存在一些动态异常。在这种情况下,异常可能是由扰动或早期故障引起的。由于控制作用,稳态仍然保持在正常范围内。
情况3:如果在静态统计量超过控制极限后,三个动态统计量均恢复正常,说明存在稳态偏离,过程动态在控制器的作用下恢复正常。在这种情况下,稳态偏离被认为是由一些外部因素引起的,过程达到了一个新的运行状态。换句话说,没有发生故障,但过程可能通过闭环控制器的调节而移动到一个新的运行状态。
情况4:在静态统计量表明稳态偏差后,如果任何动态统计量超过控制极限,则认为是实际故障中断,当前闭环控制器无法消除。
表2 过程状态识别(“√”表明三个状态都在控制限内;“×”表明至少一个统计量超过控制限)
表2 过程状态识别(“√”表明三个状态都在控制限内;“×”表明至少一个统计量超过控制限)

IV. ILLUSTRATION AND DISCUSSIONS(实验结果和讨论)

A. Process Description(工艺描述)

三相流设施是由克兰菲尔德大学设计的,它试图为加压系统提供一个控制和测量的水、油和空气的流量[37]。高平台顶部的气液两相分离器通过不同尺寸的管道输送单相的空气、水、油或流体混合物。在地面设计了三相分离器来分离这些流体混合物。通过改变空气流量和水流量来模拟不同工况下的真实系统。仿真数据以1 Hz的采样率获得,其中包括3个代表正常状态的数据集和16个代表6种故障状态的数据集。模拟了实际系统中可能发生的典型故障。通过改变空气流速和水流流速的设定点,生成正常工况下运行的三个数据集。空气流量的四个典型设定值设置为 0.0208 − 0.0417 m 3 / s 0.0208 -0.0417 m^3/s 0.02080.0417m3/s。在 0.5 − 6 0.5 - 6 0.56的范围内模拟了5种典型的水流工况。故障数据集是通过逐步将不同的故障引入到系统中,如航路堵塞、开路直通旁路等。对三相流设施的数据生成和故障场景的更详细描述可参见文献[32]。

B. Simulation Results and Analysis(仿真结果和分析)

由于[32]中提到的原因,本文选择了前23个测量变量。从三个正常数据集中选取水流速度为2 kg/s、气流速度为0.0417 m3/s的运行数据,用于本工作的模型开发,共包含3800个数据样本。此外,选取了1个存在运行工况偏差的正常数据集和2个存在实际过程故障的故障数据集,显示了该方法的优越性能或可解释性。模拟数据集总结于表III。为了说明所提方法的优越性能,本仿真采用PCA[5]、DPCA[17]、CVA[32]和SFA[35]进行比较。

表3 数据描述
首先利用正常数据,利用不同的方法建立监测模型。在本工作中,阈值α设置为0.2,延时 l = h = 10 l = h = 10 l=h=10。阈值β设置为0.8。计算控制限的显著性水平取0.05。PCA模型中保留的pc数为8。在DPCA模型中,保留的pc数量也是8个。CVA模型中保留的状态向量个数为25个。SFA模型中保留的SFs数为10。在案例#1中,该过程在相同的条件下运行,以确定前135个样本的训练数据集是否存在操作条件偏差,然后从第136个样本开始操作条件发生变化。如图3(a)所示,PCA的 T 2 T^2 T2统计量在开始时低于控制极限,从258 s开始超过正常区域,从运行条件改变后的121 s开始检测到异常。Q统计量在137s之前保持在正常区域,当操作条件发生变化时,Q统计量及时超过控制限值,说明工艺异常。然而,它不能识别异常是操作条件偏差还是真正的故障,因为PCA不能检测到过程动态的变化。从图3(b)所示的DPCA监测结果来看, T 2 T^2 T2统计量从182 s开始超过其控制极限,比PCA早76 s检测到异常。但是由于DPCA不能有效地表示一个动态系统,使得一些重要的动态行为没有被捕捉到,DPCA仍然有明显的45秒的时间延迟。当运行条件改变时,Q统计量超出控制范围。与PCA类似,它不能提供更多的信息来确定是操作条件偏差还是真正的故障。
图3(c)可以看出,在条件改变前,CVA方法的两个统计量都在控制范围内,说明过程正常。当运行条件从137s开始改变时,它们及时超过控制极限,说明过程异常,但没有提供任何其他信息。图3(d)显示了案例#1的SFA监测结果。如图所示,在条件改变之前, T d 2 T_d^2 Td2 T e 2 T_e^2 Te2都是正常的,然后从137s开始超出正常区域。当运行工况开始发生变化时, S d 2 S_d^2 Sd2 S e 2 S_e^2 Se2两个动态统计量及时超出控制极限,并在几秒内向正常值回落,说明在控制良好的情况下发生了运行工况偏差。
图3 案例#1 监测结果(a)PCA (b)DPCA (c)CVA (d) SFA
图3 案例#1 监测结果(a)PCA (b)DPCA (c)CVA (d) SFA

使用案例#1中提出的方法在两个子空间中的监测结果如图4所示。如图4(a)所示,正则子空间中的两个静态统计量从137s开始超过正态区域,这检测到一个条件偏差。
工况变化时, S c , d 2 S^2_{c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2两个动态统计量及时超过控制极限,并在几秒内降至正常值,闭环控制器对工作点偏差的调节效果良好。图4(b)的统计数据也显示检测到条件偏差。
图4 所提方法在案例#1 中监测结果 稳态和暂态变化(a)正交子空间 (b)残差子空间
图4 所提方法在案例#1 中监测结果 稳态和暂态变化(a)正交子空间 (b)残差子空间

在Case #2中,该过程一开始在正常状态下工作,然后航空公司的手动阀从657秒开始逐渐关闭。故障持续3120s,从3777s开始阀门完全重新打开。如图5(a)所示,PCA方法的T2统计量在2763 s时开始超过其控制极限,延时长至2107 s。故障引入后,Q统计量保持在正常范围内,大约1210s后才检测到故障。主成分分析的时间延迟较长,表明其处理过程动态的能力较差。从图5(b)可以看出,DPCA与PCA的监测结果相似。T2统计量检测到的故障延时为1801 s, Q统计量从1866 s开始超出正常范围。DPCA较差的故障检测能力再次说明它不能提供准确和完整的过程动力学探索。如图5(c)所示,CVA方法的两个统计量在前656 s内都保持在正态区域。当故障从657秒开始引入,直到2151秒T2统计量才超过控制限制值,此时检测故障的时间延迟可达1504秒。Q统计量从第1560个采样开始检测故障,时延为903秒。如图5(d)所示,在引入故障之前,SFA方法的 T d 2 T^2_d Td2 T e 2 T^2_e Te2都超出了控制范围,触发了许多虚警。当阀在3060s前逐渐关闭时,阀阶跃调节后,两项动态统计量向正常区域急剧下降,说明控制性能良好。从3060s开始故障变得严重时, S d 2 S^2_d Sd2 S e 2 S^2_e Se2的许多值都超过了控制范围;说明过程动力学受到故障的影响。
图5 案例#2 监测结果(a)PCA (b)DPCA (c)CVA (d)SFA
图6给出了在Case #2中采用本文方法对两个子空间中的6个统计量的监测结果。在图6(a)中,在引入故障后约595 s,正则子空间中的两个静态统计量开始超过控制极限,比CVA早909 s检测到故障。当阀门度数发生变化时, S c , d 2 S^2_{c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2超过控制极限两个动态统计量及时向正常值急剧下降,闭环控制器对工况变化的调节效果良好。在3060 ~ 3371 s故障非常严重时,只有部分样本的 S c , d 2 S^2_{c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2超过控制极限,说明控制性能仍然可以接受。通过对正则子空间中四种统计量的分析表明,尽管引入了故障,但直到故障结束之前,与闭环控制相关的过程动力学都没有受到影响。如图6(b)所示,残差子空间的静态统计量比CVA早299 s检测到条件偏差,这与正则子空间的监测性能相似。描述时间变化的统计量表明,在故障结束之前,没有发现明显的动态异常。
图6 所提方法在案例#2 中稳态和暂态变化监测结果(a)正交子空间(b)残差子空间
图6 所提方法在案例#2 中稳态和暂态变化监测结果(a)正交子空间(b)残差子空间

在情况#3中,过程一开始是正常的,然后4”旁通管线上的阀门从851英寸开始逐渐打开,以模拟泄漏故障。阀门再次从3851 s关闭,过程恢复正常。如图7(a)所示,PCA的T2从一开始就超出了控制极限,在1955 - 2660 s期间回归到正常区域。Q统计量从一开始就超过控制极限,从4177s开始回到正常区域。如图7(b)所示,CVA方法的两项统计量从一开始就超出了正态区域。PCA和DPCA都没有提供关于进程状态的更多信息。
图7(c)中,CVA方法的T2统计量从1274 s开始超过控制极限,延时为115 s。故障发生前,很多Q统计值超出正常范围,触发很多虚警。从图7(d)所示的监测结果来看,在引入故障之前,SFA方法的两个静态统计量都超出了控制范围。在故障开始时,两个动态统计量在正常区域内,表明在良好控制下,过程动态与参考条件相同。当故障从1276 s开始变得严重时, S d 2 S^2_d Sd2 S e 2 S^2_e Se2超出控制限制并检测到故障。在这种情况下,过程动力学被破坏,因此这种报警在实践中值得注意。
图7 案例#3 监测结果(a)PCA (b)DPCA (c)CVA (d)SFA

图8(a)显示了本文方法在正则子空间中的监测结果。如图所示,故障引入前 T c , d 2 T^2_{c,d} Tc,d2统计值在正常区域之外,说明当前状态与参考状态不一致。通过动态统计分析可以看出,在故障发生前, S c , d 2 S^2_{c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2均处于控制范围内。因此,可以得出结论,由于一些干扰,在过程开始时已检测到条件偏差。当故障变得严重时, S c , d 2 S^2_{c,d} Sc,d2 S c , e 2 S^2_{c,e} Sc,e2都超出控制范围,这表明与闭环控制相关的过程动力学被故障破坏。图8(b)为残差子空间的监测结果。残差子空间中的静态统计量得到了与正则子空间相同的结论。首先检测到工况偏差,然后检测到具有明显动力学异常的故障。
图8 所提方法在案例#2 中稳态和暂态变化监测结果(a)正交子空间(b)残差子空间
对比3个测试案例中5种方法的监测结果,PCA和DPCA对闭环控制下过程动态变化的捕捉能力较差。CVA的故障检测性能优于PCA和DPCA。但是,以上三种方法都可以判断是否检测到异常,但不能判断是正常的运行状态变化还是真正的故障。虽然SFA通过同时分析静态统计和动态统计可以提供更多的过程信息,但SFA的静态统计,即 T d 2 T^2_d Td2 T e 2 T^2_e Te2在三相流设施过程中表现出相对较差的性能,在第二种情况下超过控制极限,虚警率非常高。这是因为由于闭环控制,SFA不能提供对串行动力学的准确评估。与其他四种方法相比,该方法具有较高的故障检测率和较低的虚警率。此外,通过对闭环控制下过程动力学的深入研究,为过程状态的精细辨识提供了更详细的控制作用分析。

V. CONCLUSION(结论)

在本工作中,利用所提出的CVA-SFA策略对闭环控制引起的过程动力学进行了提取和分析。通过两步分析,从序列相关和变速等不同角度对过程动力学进行深入分析,探讨控制作用对过程行为的影响。数据中呈现的序列相关动态结构可以用CVA建模。然后,SFA可以分别在规范状态空间和残差空间中分析和监测静态和时间变化。所提出的CVA-SFA方法通过对闭环控制下的过程动力学进行精细分析,可以有效地识别不同的过程运行状态。通过与其他监测方法的比较,在三相流设施过程中验证了该方法的可行性和有效性。

Digital Object Identifier 10.1109/TII.2019.2896987

  • 29
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值