【归档】Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace...

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace of R [ 0 , 1 ] R^{[0, 1]} R[0,1]

Note Before Proof: 证明一个集合是另外一个集合的子空间,只要证明这个集合具有加法单位元0、加法封闭性、标量乘法封闭性即可。
Prove:
Let V = { f ∣ f : [ 0 , 1 ] → R f | f: [0, 1] \rightarrow R ff:[0,1]R such that f is continuous}.
Part 1, additive identity(加法单位元):
Take f 0 = 0 ( ∀ x ∈ [ 0 , 1 ] ) f_{0} = 0 (\forall x \in [0, 1]) f0=0(x[0,1]). Clearly f 0 f_{0} f0 is continuous and f 0 ∈ V f_{0} \in V f0V.
Part 2, closed under addition(加法封闭性):
Take f , g ∈ V f, g \in V f,gV.
For each ϵ > 0 \epsilon > 0 ϵ>0 and for each x ∈ [ 0 , 1 ] x \in [0, 1] x[0,1] there exists a δ > 0 \delta > 0 δ>0. Such that if ∣ x 1 − x 2 ∣ < δ |x_{1} - x_{2}| < \delta x1x2<δ, then ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ 2 |f(x_{1}) - f(x_{2})| < \frac{\epsilon}{2} f(x1)f(x2)<2ϵ, and ∣ g ( x 1 ) − g ( x 2 ) ∣ < ϵ 2 |g(x_{1}) - g(x_{2})| < \frac{\epsilon}{2} g(x1)g(x2)<2ϵ.
Since f + g = ( f + g ) ( x ) = f ( x ) + g ( x ) f + g = (f + g)(x) = f(x) + g(x) f+g=(f+g)(x)=f(x)+g(x), we have
∣ ( f + g ) ( x 1 ) − ( f + g ) ( x 2 ) ∣ = ∣ [ f ( x 1 ) − f ( x 2 ) ] + [ g ( x 1 ) − g ( x 2 ) ] ∣ ≤ ∣ [ f ( x 1 ) − f ( x 2 ) ] ∣ + ∣ [ g ( x 1 ) − g ( x 2 ) ] ∣ < ϵ . \begin{aligned} & |(f + g)(x_{1}) - (f + g)(x_{2})|\\= & |[f(x_{1}) - f(x_{2})] + [g(x_{1}) - g(x_{2})]|\\ \le & |[f(x_{1}) - f(x_{2})]| + |[g(x_{1}) - g(x_{2})]|\\< & \epsilon.\end{aligned} =<(f+g)(x1)(f+g)(x2)[f(x1)f(x2)]+[g(x1)g(x2)][f(x1)f(x2)]+[g(x1)g(x2)]ϵ.
i.e. f + g f + g f+g is continuous at all x ∈ [ 0 , 1 ] x \in [0, 1] x[0,1].
Therefor, f + g ∈ V f + g \in V f+gV.
Part 3, closed under scalar multiplication(标量乘法封闭性):
Take f ∈ V f \in V fV, and a ∈ R a \in R aR.
Assume a= 0, then
( a f ) ( x ) = a ⋅ f ( x ) = 0 , x ∈ [ 0 , 1 ] (af)(x) = a \cdot f(x) = 0, x \in [0, 1] (af)(x)=af(x)=0,x[0,1].
Clearly, a f af af is a continuous real-valued function on the interval [0, 1].
Assume a ≠ 0 a \neq 0 a=0, for each ϵ > 0 \epsilon > 0 ϵ>0 and for each x ∈ [ 0 , 1 ] x \in [0, 1] x[0,1], there exists a δ > 0 \delta > 0 δ>0 such that if
∣ x 1 − x 2 ∣ < δ |x_{1} - x_{2}| < \delta x1x2<δ,
then
∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ a |f(x_{1}) - f(x_{2})| < \frac{\epsilon}{a} f(x1)f(x2)<aϵ.
Now we have
∣ ( a f ) ( x 1 ) − ( a f ) ( x 2 ) ∣ = ∣ a [ f ( x 1 ) − f ( x 2 ) ] ∣ = ∣ a ∣ ⋅ ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ |(af)(x_{1}) - (af)(x_{2})| = |a[f(x_{1}) - f(x_{2})]| = |a|\cdot|f(x_{1}) - f(x_{2})| < \epsilon (af)(x1)(af)(x2)=a[f(x1)f(x2)]=af(x1)f(x2)<ϵ.
Therefor, a f ∈ V af \in V afV.
Thus V is a subspace of R [ 0 , 1 ] R^{[0, 1]} R[0,1].

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值