223. 矩形面积

223. 矩形面积

链接:https://leetcode-cn.com/problems/rectangle-area/

二维平面上计算出两个由直线构成的矩形重叠后形成的总面积。

每个矩形由其左下顶点和右上顶点坐标表示,如图所示。

Rectangle Area

示例:

输入: -3, 0, 3, 4, 0, -1, 9, 2
输出: 45

说明: 假设矩形面积不会超出 int 的范围。

思路:其实本题最核心的就是求矩阵交集部分的面积,需要的结果=两个矩阵面积和 - 交集面积。我们来看一下矩阵相交的情况,推一下规律或公式:

 

可以看出,交集的矩形部分,左上角的x坐标,来自两个矩形的左端x的更大值,左上角的y坐标,来自两个矩形的上端的y的更大值,右下角类似。

class Solution {
public:
    int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
        int Lx, Ly, Rx, Ry;
        Lx = max(A, E); // 0
        Ly = min(D, H); // 2
        Rx = min(C, G); // 3
        Ry = max(B, F); // 0
        if(Lx > Rx || Ly < Ry) return (H - F) * (G - E) + (D - B) * (C - A);
        return (H - F) * (G - E) - (Rx - Lx) * (Ly - Ry) + (D - B) * (C - A);
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值