mindspore第一天打卡


import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

train_dataset

train_dataset.get_batch_size()

help(train_dataset)

print(train_dataset.get_col_names())


    ['image', 'label']

```python

# 遍历数据集,打印前几个样本的图像数据
for idx, data in enumerate(train_dataset.create_tuple_iterator()):
    if idx >= 5:  # 只查看前5个样本
        break
    image = data[0].asnumpy()  # 从数据元组中提取图像数据并转换为NumPy数组
    print(f"Sample {idx + 1} image shape: {image.shape}")
    # 注意: 你可以进一步处理或显示这个图像,例如使用matplotlib库
    # 例如: 
    import matplotlib.pyplot as plt; 
    plt.imshow(image.squeeze(), cmap='gray'); 
    plt.show()

```

    Sample 1 image shape: (28, 28, 1)

    
#![png](output_6_1.png)
    


```python
def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
```

    Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
    Shape of label: (64,) Int32

```python
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
```

    Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
    Shape of label: (64,) Int32

```python
# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
```

    Network<
      (flatten): Flatten<>
      (dense_relu_sequential): SequentialCell<
        (0): Dense<input_channels=784, output_channels=512, has_bias=True>
        (1): ReLU<>
        (2): Dense<input_channels=512, output_channels=512, has_bias=True>
        (3): ReLU<>
        (4): Dense<input_channels=512, output_channels=10, has_bias=True>
        >
      >


MindSpore中的`CrossEntropyLoss`类是用于计算交叉熵损失的一个模块,它是监督学习中常见的损失函数,特别是在分类问题中广泛使用。这个损失函数衡量了模型预测概率分布与真实标签(或概率分布)之间的差距。以下是对其功能和参数的详细解析:

### 基本概念
- **输入**:模型的输出通常是对每个类别的预测概率,称作 logits 或 scores,而目标(labels)可以是类别索引或概率分布。
- **输出**:一个标量值,表示模型在给定批次数据上的损失,该值可用于反向传播以更新模型参数。

### 参数解析
- **weight (`Tensor`, 可选)**: 为每个类别分配一个权重,用于重新缩放损失。这对于类别不平衡问题特别有用,可以通过调整不同类别的损失重要性来优化模型学习。默认为 `None`,表示不对类别进行加权。
- **ignore_index (int, 默认-100)**: 指定一个目标值,在计算损失和梯度时忽略它,通常用于处理数据集中的填充项。
- **reduction (str, 默认'mean')**: 指定如何在批次内聚合损失值。选项有 `'none'`(不进行聚合)、`'mean'`(取平均值)和`'sum'`(求和)。
- **label_smoothing (float, 默认0.0)**: 一种正则化手段,通过在真实标签上添加一点噪声来防止过拟合,取值范围是 [0.0, 1.0]。值越接近0,影响越小。

### 输入要求
- **logits**: 模型输出,形状可以是 `(C,)`、`(N, C)` 或更高维度的张量,其中 `C` 是类别数,数据类型需为 `float16` 或 `float32`。
- **labels**: 目标标签,可以是类别索引(整数类型,如 `(N,)` 或 `(N, d1, d2, ..., dK)` 形状,数据类型为 `int32`),也可以是每个样本的概率分布(形状和数据类型同 logits)。

### 计算逻辑
- **对于类别索引作为标签**:损失针对每个样本的正确类别计算,公式为 `-w_y * log(p_y)`,其中 `w_y` 是对应类别的权重(如果设置了 `weight`),`p_y` 是该类别的预测概率,且计算前会先除以对应行的元素和(softmax操作的输出)。如果标签等于 `ignore_index`,则不计入损失。
- **对于概率分布作为标签**:损失计算考虑了真实概率分布,公式为 `-∑w_c * log(p_c) * y_c`,其中 `w_c` 是类别的权重,`p_c` 是模型预测的类别为 `c` 的概率,`y_c` 是真实概率分布中类别 `c` 的概率。
- 根据 `reduction` 参数决定是否对批次内的损失进行平均或求和。

### 返回值
返回一个张量,表示计算得到的交叉熵损失值。

### 异常情况
- 如果输入的类型或形状不符合要求,会抛出相应的错误。

总之,`CrossEntropyLoss` 实现了灵活的交叉熵损失计算,支持类别权重、忽略索引以及标签平滑等特性,是训练分类模型时常用的损失函数。

 $\ell(x, y) = \begin{cases}
             \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore_index}\}} l_n, &
             \text{if reduction} = \text{'mean',}\\
             \sum_{n=1}^N l_n,  &
             \text{if reduction} = \text{'sum'.}
             \end{cases}$

MindSpore框架中的`CrossEntropyLoss`类实现的交叉熵损失函数,支持两种类型的标签输入,并提供了可选的权重调整、忽略索引、损失减少方法以及标签平滑功能。下面是该损失函数的数学公式及解释,结合具体的例子来帮助理解。

### 公式与解释

#### 类别索引作为标签(int型)

当目标`y`是类别索引(整数)时,损失函数定义为:

$\[
\ell(x, y) = L = \{l_1, \ldots, l_N\}^\top, \quad
l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})} \cdot \mathbb{1}\{y_n \not= \text{ignore_index}\}
\]$

- \(x\) 是模型输出的对数概率(logits),形状为 \((N, C)\),其中 \(N\) 是批量大小,\(C\) 是类别数量。
- \(y_n\) 是第 \(n\) 个样本的真实类别索引。
- \(w_{y_n}\) 是针对第 \(n\) 个样本的真实类别 \(y_n\) 的权重,如果未指定,则默认每个类的权重为 1。
- \(\mathbb{1}\{y_n \not= \text{ignore_index}\}\) 是指示函数,如果 \(y_n\) 不等于忽略索引,则为 1,否则为 0,用来排除忽略的类别。
- 当 `reduction` 不为 `'none'` 时,损失会进一步归约:
  - 平均:\(\ell(x, y) = \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore_index}\}} l_n\) (如果 `reduction='mean'`)
  - 总和:\(\ell(x, y) = \sum_{n=1}^N l_n\) (如果 `reduction='sum'`)

#### 概率作为标签(float型)

如果目标`y`是每个类别的概率分布,损失函数变为:

$\[
\ell(x, y) = L = \{l_1, \ldots, l_N\}^\top, \quad
l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^C \exp(x_{n,i})} y_{n,c}
\]$

- \(y_{n,c}\) 是第 \(n\) 个样本在类别 \(c\) 上的真实概率。
- \(w_c\) 是针对类别 \(c\) 的权重,如果未指定,则每个类的权重默认为 1。
- 其他符号含义与前一情况相同。

### 例子解析

假设有一个二分类问题,批量大小 \(N=2\),每个样本有 \(C=2\) 个类别。模型对第一个样本预测的对数概率为 \([-1.2, 0.5]\),真实类别索引为0(表示第一个类别);对第二个样本预测的对数概率为 \([-0.7, -1.5]\),真实类别索引为1(表示第二个类别)。忽略索引设为默认值,不使用类别权重,且采用默认的均值归约方式。

- 对于第一个样本,计算的损失是$ \(-\log\left(\frac{\exp(-1.2)}{\exp(-1.2)+\exp(0.5)}\right) = -\log(0.27) ≈ 1.2527\)$
- 对于第二个样本,计算的损失是 $\(-\log\left(\frac{\exp(-1.5)}{\exp(-0.7)+\exp(-1.5)}\right) = -\log(0.22) ≈ 1.5108\)$

如果采用均值归约(`reduction='mean'`),最终的损失为 \(\frac{1.2527 + 1.5108}{2} ≈ 1.3818\)。

### 总结

`CrossEntropyLoss`在MindSpore中提供了灵活的配置选项,可以适应不同类型的标签输入,并允许用户根据需要调整损失计算的方式,如通过权重调整、忽略特定标签值、选择不同的损失归约策略以及应用标签平滑技术,从而优化模型的训练过程。


```python
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)
```


SGD(Stochastic Gradient Descent,随机梯度下降)是最基本也是最常用的优化算法之一,用于更新模型参数。在MindSpore的SGD实现中,支持动量(momentum)和Nesterov动量加速。以下是算法的数学公式及其解释:

### 基础SGD更新公式(无动量):
$\[ p_{t+1} = p_{t} - \eta \cdot g_{t} \]$
其中:
- \( p_{t} \) 表示在时间步 \( t \) 时的参数向量。
- \( g_{t} \) 表示在时间步 \( t \) 时的梯度向量。
- \( \eta \) 表示学习率(learning rate)。

### 动量SGD更新公式(含动量项 \( v \)):
$\[ v_{t+1} = \mu \cdot v_{t} + g_{t} \]$
$\[ p_{t+1} = p_{t} - \eta \cdot v_{t+1} \]$
其中:
- \( v_{t} \) 是累积动量项,在时间步 \( t \) 时的值。
- \( \mu \) 是动量系数(momentum coefficient),用于控制历史梯度的影响力。

### Nesterov动量SGD更新公式:
$\[ v_{t+1} = \mu \cdot v_{t} + g_{t} \]$
$\[ p_{t+1} = p_{t} - \eta \cdot (\mu \cdot v_{t+1} + g_{t}) \]$
或者等价地写作:
\[ v_{t+1} = \mu \cdot v_{t} + (1 + \mu) \cdot g_{t} \]
\[ p_{t+1} = p_{t} - \eta \cdot v_{t+1} \]
这里的区别在于计算梯度更新时,先考虑了未来的动量项 \( \mu \cdot v_{t+1} \),这被称为Nesterov加速。

### 举例解析
假设我们有参数 \( p_t = 3 \),梯度 \( g_t = -1 \),学习率 \( \eta = 0.1 \),动量系数 \( \mu = 0.9 \),且初始动量 \( v_0 = 0 \)。

- **基础SGD更新**:
  第一步:无动量,直接更新参数。
  $\( p_{1} = p_{0} - \eta \cdot g_{0} = 3 - 0.1 \cdot (-1) = 3.1 \)$

- **动量SGD更新**:
  第一步:计算动量 \( v_1 \) 和更新参数。
 $ \( v_{1} = \mu \cdot v_{0} + g_{0} = 0.9 \cdot 0 + (-1) = -1 \)$
 $ \( p_{1} = p_{0} - \eta \cdot v_{1} = 3 - 0.1 \cdot (-1) = 3.1 \)$
  第二步:继续更新动量和参数。
 $ \( v_{2} = \mu \cdot v_{1} + g_{1} = 0.9 \cdot (-1) + (-1) = -1.9 \)$
 $\( p_{2} = p_{1} - \eta \cdot v_{2} = 3.1 - 0.1 \cdot (-1.9) = 3.29 \)$
  可见,动量机制使得更新更为平滑,考虑了历史梯度。

- **Nesterov动量SGD更新**:
  第一步:使用Nesterov方法计算动量和更新参数。
  $\( v_{1} = \mu \cdot v_{0} + g_{0} = 0.9 \cdot 0 + (-1) = -1 \)$
$  \( p_{1} = p_{0} - \eta \cdot (\mu \cdot v_{1} + g_{0}) = 3 - 0.1 \cdot (0.9 \cdot (-1) - 1) = 3.19 \)$
  这里,更新时考虑了动量项对未来梯度的影响,可能导致更快的收敛速度和更好的性能。

综上所述,SGD算法通过不断根据梯度调整参数来最小化目标函数,而动量机制和Nesterov动量则是为了加速收敛和提高训练稳定性而引入的改进。Mindspore的SGD实现支持这些优化策略,并允许用户通过设置参数来自定义学习过程。


```python
optimizer.parameters
```


    (Parameter (name=dense_relu_sequential.0.weight, shape=(512, 784), dtype=Float32, requires_grad=True),
     Parameter (name=dense_relu_sequential.0.bias, shape=(512,), dtype=Float32, requires_grad=True),
     Parameter (name=dense_relu_sequential.2.weight, shape=(512, 512), dtype=Float32, requires_grad=True),
     Parameter (name=dense_relu_sequential.2.bias, shape=(512,), dtype=Float32, requires_grad=True),
     Parameter (name=dense_relu_sequential.4.weight, shape=(10, 512), dtype=Float32, requires_grad=True),
     Parameter (name=dense_relu_sequential.4.bias, shape=(10,), dtype=Float32, requires_grad=True))


```python
# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        print("test_loss1-->",test_loss)
        correct += (pred.argmax(1) == label).asnumpy().sum()
        print("pred.argmax(1)-->",pred.argmax(1))
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
```


```python
epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
```

    Epoch 1
    -------------------------------
    loss: 2.293846  [  0/938]
    loss: 1.676837  [100/938]
    loss: 0.913287  [200/938]
    loss: 0.653671  [300/938]
    loss: 0.363841  [400/938]
    loss: 0.396162  [500/938]
    loss: 0.323629  [600/938]
    loss: 0.268962  [700/938]
    loss: 0.222217  [800/938]
    loss: 0.440861  [900/938]
    test_loss1--> 0.406164288520813
    pred.argmax(1)--> [7 5 6 2 7 7 1 6 3 3 6 2 6 1 1 6 0 9 9 7 7 9 4 0 5 1 6 4 4 0 9 2 0 2 8 3 8
     7 3 4 0 4 6 9 0 8 2 2 1 9 3 9 5 7 6 6 6 1 6 6 2 8 4 8]
    test_loss1--> 0.8395757973194122
    pred.argmax(1)--> [6 0 1 0 0 7 6 7 1 7 0 0 2 8 0 2 3 2 5 3 5 7 5 2 5 6 1 1 0 4 3 0 3 7 6 0 1
     5 9 5 2 2 8 4 2 9 5 6 6 1 4 7 2 6 1 5 6 4 4 1 2 2 0 4]
    test_loss1--> 1.3517875969409943
    pred.argmax(1)--> [6 1 5 7 2 1 1 4 0 4 3 0 3 3 4 5 6 0 1 0 0 7 5 2 2 0 3 5 7 1 5 3 3 4 2 5 4
     5 0 4 8 2 1 9 1 1 6 7 7 3 5 0 0 4 5 7 7 6 8 3 1 7 7 1]
   
    test_loss1--> 33.19779993593693
    pred.argmax(1)--> [4 1 7 7 8 2 9 1 1 4 5 6 1 7 8 9]
    Test: 
     Accuracy: 93.8%, Avg loss: 0.211451 
    
    Done!

```python
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
```

    Saved Model to model.ckpt

```python
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
```

    []

```python
model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
```

    Predicted: "[4 2 5 8 8 8 3 3 4 7]", Actual: "[4 2 5 8 8 8 3 3 4 7]"

```python
print("wancheng  author:yangge yyp 2024-6-19")
```

    wancheng  author:yangge yyp 2024-6-19

```python

```
 

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值