2d 3d旋转和平移的矩阵分析

这篇博客介绍了矩阵在2D和3D旋转及平移中的应用。2D旋转通过点坐标与旋转矩阵的运算实现,3D旋转则围绕特定轴进行。2D平移矩阵通过将位置点的x和y坐标直接加上平移距离完成。3D平移类似。同时,文章探讨了如何结合旋转和平移矩阵,通过矩阵乘法实现复合变换,例如绕Y轴旋转并平移的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里我对矩阵的转置和乘积不再过多赘述了

矩阵转置就是对矩阵的行和列进行翻转得到一个新的矩阵。

矩阵乘积 首先要满足第一个矩阵的行数 等于第二个矩阵的列数,然后可以进行乘法运算。

在这里插入图片描述

2d 和 3d旋转


先来介绍2d的旋转矩阵的计算方式

点(x,y)=>得到新的坐标位置 (x*Cos(a) - y*Sin(a) , x*Sin(a) + y*Cos(a))

3d的旋转矩阵的计算方式

3d的旋转矩阵的计算方式就是绕着某一个轴进行旋转,该轴对应的行和列 均为0,相交点为1。

绕着z轴旋转的矩阵就是2d旋转矩阵。


 

 

学习内容:2d 和 3d平移

2d的平移矩阵的计算方式


由于我们知道在矩阵中单位矩阵 和任何矩阵相乘都等于自己,位置点的平移可以用矩阵这个方式进行实现,简单的来说 x 和 y 都加上自己的平移距离即可。

3d的平移矩阵的计算方式

3d平移的矩阵计算方式类似于2d平移的计算方式。


 

 

2d和3d旋转平移结合的矩阵实现方式

如果我们既要绕着某一个轴旋转 ,还要对该点进行一个偏移,那我们可以对旋转矩阵和平移矩阵进行一个相乘,得到一个新的矩阵(上图为绕着Y轴旋转,并且进行偏移的产生的新的矩阵)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bubblingo0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值