Convex Optimization 读书笔记 (1)

Chapter2 Convex Set

2.1 Affine, Convex Set

2.1.1 Line, Line Segment

Suppose x 1 , x 2 x_1,x_2 x1,x2 are two points in R n \mathbf{R}^n Rn,

y = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R y=\theta x_1+(1-\theta)x_2,\theta\in\mathbf{R} y=θx1+(1θ)x2,θR

is a line. If θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1], y y y is a line segment.

2.1.2 Affine Set

A set C ⊆ R n C\subseteq\mathbf{R}^n CRn is affine if for any x 1 , x 2 ∈ C , θ ∈ R x_1,x_2\in C,\theta \in \mathbf{R} x1,x2C,θR, θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C.

Affine combination means for x 1 , x 2 , … , x k x_1,x_2,\ldots,x_k x1,x2,,xk and ∑ i θ i = 1 \sum_i \theta_i=1 iθi=1, ∑ i k θ i x i ∈ C \sum_i^k{\theta_ix_i}\in C ikθixiC. If x i ∈ C x_i \in C xiC, then its affine combination ∈ C \in C C.

A affine set C C C can be expressed as C = V + x 0 = { v + x 0 ∣ v ∈ V } C=V+x_0=\{v+x_0|v\in V\} C=V+x0={v+x0vV} ( a subspace plus an offset). The dimension of an affine set is the dimension of subspace V = C − x 0 , x 0 ∈ C V=C-x_0, x_0\in C V=Cx0,x0C.

Affine hull of a set C C C is the set of all affine combination of x i ∈ C x_i\in C xiC, denoted as
a f f   C = { ∑ i k θ i x i ∣ x i ∈ C , ∑ i θ i = 1 } {\rm \mathbf{aff}}\space C=\{\sum_i^k{\theta_ix_i}|x_i \in C, \sum_i\theta_i=1\} aff C={ikθixixiC,iθi=1}
affine hull is the smallest affine set that contains C C C, which is if set S S S is a affine set that contains C C C, the a f f   C ⊆ S {\mathbf{aff}} \space C \subseteq S aff CS.

2.1.3 Affine dimension, relative interior

Affine dimension of a set C C C is the dimension of its affine hul,

Relative interior is
r e l i n t   C = { x ∈ C ∣ B ( x , r ) ∩ a f f   C ⊆ C   f o r   s o m e   r > 0 } \mathbf{relint}\space C=\{x\in C\mid B(x,r)\cap\mathbf{aff}\space C\subseteq {\rm C \space for\space some \space} r>0\} relint C={xCB(x,r)aff CC for some r>0}
where B ( x , r ) = { y ∣ ∣ ∣ y − x ∣ ∣ ≤ r } B(x,r)=\{ y\mid ||{y-x}|| \leq r \} B(x,r)={yyxr}

2.1.4 Convex sets

Set C C C is convex if for x 1 , x 2 ∈ C , θ ∈ [ 0 , 1 ] x_1,x_2\in C, \theta \in [0,1] x1,x2C,θ[0,1], we have θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C.

A convex combination means the form ∑ i k θ i x i \sum_i^k{\theta_ix_i} ikθixi, where ∑ i θ i = 1 , θ i > 0 \sum_i\theta_i=1, \theta_i>0 iθi=1,θi>0.

Convex hull of a set C C C is the set of all convex combination of x i ∈ C x_i\in C xiC, denoted as
c o n v   C = { ∑ i k θ i x i ∣ x i ∈ C , ∑ i θ i = 1 , θ i > 0 } {\rm \mathbf{conv}}\space C=\{\sum_i^k{\theta_ix_i}|x_i \in C, \sum_i\theta_i=1,\theta_i>0\} conv C={ikθixixiC,iθi=1,θi>0}
Convex hull is the smallest convex set that contains C C C, which is if set S S S is a convex set that contains C C C, the c o n v   C ⊆ S {\mathbf{conv}} \space C \subseteq S conv CS.

2.1.5 Cones

A set C C C is a cone if for x ∈ C , θ > 0 x\in C,\theta>0 xC,θ>0, we have θ x ∈ C \theta x\in C θxC. A set is convex cone if for x 1 , x 2 ∈ C ; θ 1 , θ 2 ≥ 0 x_1,x_2 \in C;\theta_1,\theta_2\geq0 x1,x2C;θ1,θ20, we have θ 1 x 1 + θ 2 x 2 ∈ C \theta_1x_1+\theta_2x_2\in C θ1x1+θ2x2C.

A conic combination of x i ∈ C x_i\in C xiC is ∑ i θ i x i \sum_i\theta_ix_i iθixi with θ i ≥ 0 \theta_i\geq0 θi0.

2.2 Important examples

2.2.1 hyperplane, halfspaces

A hyperplane is a set of form
{ x ∣ a T x = b } \{x\mid a^Tx=b\} {xaTx=b}
where a ∈ R n , a ≠ 0 , b ∈ R a\in \mathbf{R}^n,a\neq0,b\in \mathbf{R} aRn,a=0,bR. It can be represented as
{ x ∣ a T ( x − x 0 ) = 0 } = x 0 + a ⊥ \{ x \mid a^T(x-x_0) =0 \}=x_0 + a^{\bot} {xaT(xx0)=0}=x0+a
Where a ⊥ a^{\bot} a means { x ∣ a T x = 0 } \{ x\mid a^Tx =0 \} {xaTx=0}. Shown as Fig 2.6.

在这里插入图片描述

A hyperplane devide space into 2 halfspaces:
{ x ∣ a T x ≤ b } \{ x\mid a^Tx\leq b\} {xaTxb}
or
{ x ∣ a T ( x − x 0 ) ≤ 0 } \{ x\mid a^T(x-x_0)\leq 0\} {xaT(xx0)0}

2.2.2 Euclidean balls, ellipsoids

A Euclidean balls in R n \mathbf{R}^n Rn is
B ( x c , r ) = { x ∣ ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x ∣ ( x − x c ) T ( x − x c ) ≤ r 2 } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{ x \mid ||x-x_c||_2\leq r\}=\{ x \mid (x-x_c)^T(x-x_c)\leq r^2\}=\{x_c+ru\mid ||u||_2\leq1\} B(xc,r)={xxxc2r}={x(xxc)T(xxc)r2}={xc+ruu21}
where r > 0 , ∣ ∣ u ∣ ∣ 2 = ( u T u ) 1 2 r>0, ||u||_2=(u^Tu)^{\frac{1}{2}} r>0,u2=(uTu)21.

A Ellipsoid is
E = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } = { x c + A u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } \mathcal{E}=\{ x|(x-x_c)^TP^{-1}(x-x_c)\leq 1 \}=\{ x_c+Au\mid ||u||_2\leq1 \} E={x(xxc)TP1(xxc)1}={xc+Auu21}
where P = P T , P ≻ 0 , A P=P^T,P\succ0, A P=PT,P0,A square and nonsingular.

2.2.3 Norm ball, Norm cone

A norm ball is { x ∣ ∣ ∣ x − x c ∣ ∣ ≤ r } \{ x\mid ||x-x_c|| \leq r \} {xxxcr}, where ∣ ∣ ⋅ ∣ ∣ ||\cdot|| is any norm.

A norm cone is { ( x , t ) ∣ ∣ ∣ x ∣ ∣ ≤ t } ⊆ R n + 1 \{ (x,t) \mid ||x|| \leq t \} \subseteq\mathbf{R}^{n+1} {(x,t)xt}Rn+1, where ∣ ∣ ⋅ ∣ ∣ ||\cdot|| is any norm.

2.2.4 Polyhedra

A polyhedron is thus the intersection of a finite number of halfspaces and hyperplanes:
P = { a j T x ≤ b j , j = 1 , ⋯   , m ; c i T x = d i , i = 1 , ⋯   , p } \mathcal{P}=\{ a^T_jx\leq b_j,j=1,\cdots,m;c^T_ix =d_i, i=1,\cdots,p \} P={ajTxbj,j=1,,m;ciTx=di,i=1,,p}
It can be represented as compact form:
P = { x ∣ A T x ⪯ b ; C T x = d } \mathcal{P}=\{ x\mid A^Tx\preceq b;C^Tx=d \} P={xATxb;CTx=d}
where A = [ a 1 T , ⋯   , a m T ] , C = [ c 1 T , ⋯   , c p T ] A = [a_1^T, \cdots,a_m^T],C=[c_1^T,\cdots,c_p^T] A=[a1T,,amT],C=[c1T,,cpT].

Simplexes are special polyhedron:
C = c o n v   { v 0 , ⋯   , v k } = { ∑ i = 0 k θ i v i ∣ θ ⪰ 0 ; 1 θ = 1 } C={\mathbf{conv} \space }\{ v_0,\cdots,v_k \}=\{ \sum_{i=0}^k\theta_iv_i \mid \theta \succeq0;\mathbf{1}\theta=1 \} C=conv {v0,,vk}={i=0kθiviθ0;1θ=1}
where v i − x 0 v_i-x_0 vix0 are linearly independent.

A polyhedron can be expressed in the form of convex hull add conic hull:
{ ∑ i k θ i x i ∣ ∑ i m θ i = 1 ; θ i > 0 } \{ \sum_i^{k}\theta_ix_i\mid\sum_i^m\theta_i=1;\theta_i>0 \} {ikθixiimθi=1;θi>0}
where m < k m<k m<k.

2.2.5 positive semidefinite cone

S n = { X ∈ R n × n ∣ X = X T } S + n = { X ∈ S n ∣ X ⪰ 0 } S + + n = { X ∈ S + n ∣ X ≻ 0 } \begin{aligned} \mathbf{S}^n &= \{ X\in \mathbf{R}^{n\times n} \mid X=X^T \} \\ \mathbf{S}^n_+ &= \{ X\in \mathbf{S}^{n} \mid X\succeq0 \} \\ \mathbf{S}^n_{++} &= \{ X\in \mathbf{S}^{n}_+ \mid X\succ0\} \end{aligned} SnS+nS++n={XRn×nX=XT}={XSnX0}={XS+nX0}

S + n \mathbf{S}^n_+ S+n is a convex cone.

在这里插入图片描述

2.3 Operations that preserve convexity

2.3.1 Intersection

If S 1 S_1 S1 and S 2 S_2 S2 are convex, then S 1 ∩ S 2 S_1\cap S_2 S1S2 is convex. It holds for infinite intersections:
S α ∈ S ⇒ ⋂ S α ∈ S S_{\alpha} \in S\Rightarrow\bigcap S_{\alpha} \in S SαSSαS

2.3.2 Affine

Let the function f : R n → R m f:\mathbf{R}^n\rightarrow\mathbf{R}^m f:RnRm is affine, S S S is convex set, then { f ( x ) ∣ x ∈ S } \{ f(x)\mid x\in S \} {f(x)xS} is convex.

2.3.3 Linear fractional, perspective functions

Define perspective function P : R n + 1 → R n P:\mathbf{R}^{n+1}\rightarrow\mathbf{R}^{n} P:Rn+1Rn, with d o m P = R n × R + + , P ( x , t ) = x t \mathbf{dom} P=\mathbf{R}^n\times\mathbf{R}_{++},P(x,t)=\frac{x}{t} domP=Rn×R++,P(x,t)=tx.

A linear-fractional function is formed by composing the perspective function with an affine function. Suppose g ( x ) = [ A c T ] x + [ b d ] g(x)= \left[ \begin{array}{cc} A \\ c^T \end{array} \right]x+\left[ \begin{array}{cc} b \\ d \end{array} \right] g(x)=[AcT]x+[bd], where A ∈ R m × n , c ∈ R n , b ∈ R m , d ∈ R A\in \mathbf{R}^{m\times n},c\in\mathbf{R}^{n},b\in\mathbf{R}^{m},d\in\mathbf{R} ARm×n,cRn,bRm,dR. Then f f f is P ∘ f P\circ f Pf:
f = A x + b c T x + d ,   d o m f = { x ∣ c T x + d > 0 } f=\frac{Ax+b}{c^Tx+d}, \space \mathbf{dom}f = \{ x| c^Tx+d>0\} f=cTx+dAx+b, domf={xcTx+d>0}
it can be represented as f ( x ) = P − 1 ( x ) ( Q P ( x ) ) f(x)=\mathcal{P}^{-1}(x)(Q\mathcal{P}(x)) f(x)=P1(x)(QP(x)), where P ( x ) = { t ( x , 1 ) ∣ t > 0 } \mathcal{P}(x)=\{ t(x,1) \mid t>0 \} P(x)={t(x,1)t>0}.

2.4 Generalized inequalities

2.4.1 Proper cones, generalized inequalities

A proper cone is a cone convex, close, solid and pointed.

Generalized inequalities y ⪯ K x y\preceq_Kx yKx means that x − y ∈ K x-y\in K xyK. When K = R + n K=\mathbf{R}_+^n K=R+n, we drop symbol K K K. So as K = S + n K=\mathbf{S}_+^n K=S+n.

2.4.2 Minimum, minimal elements

x ∈ S x\in S xS is the minimum element if for y ∈ S y\in S yS, then x ⪯ K y x\preceq_Ky xKy.

x ∈ S x\in S xS is the minimal element if y ∈ S , x ⪯ K y y\in S,x\preceq_Ky yS,xKy only if y = x y=x y=x.

在这里插入图片描述

2.5 Separating and supporting hyperplanes

2.5.1 Separating hyperplane theorem

Separating hyperplane theorem: Suppose C C C and D D D are nonempty convex sets and C ∩ D = ∅ C∩D=∅ CD=. Then there exist a ≠ 0 a\neq0 a=0 and b b b such that. a T x ≤ b a^Tx≤b aTxb for all x ∈ C x∈C xC and a T x ≥ b a^Tx≥b aTxb for all x ∈ D x∈D xD.

The strict seperation is θ T x < b \theta^Tx<b θTx<b for all x ∈ C x∈C xC and a T x > b a^Tx>b aTx>b for all x ∈ D x∈D xD.

2.5.2 Supporting hyperplane

Suppose C ⊆ R n C ⊆ R_n CRn, and x 0 x0 x0 is a point in its boundary b d   C \mathbf{bd}\space C bd C,
x 0 ∈ b d   C = c l   C \ i n t   C x_0 ∈ \mathbf{bd}\space C = \mathbf{cl}\space C \backslash \mathbf{int}\space C x0bd C=cl C\int C
If. a ≠ 0 a\neq0 a=0 satisfies a T x ≤ a T x 0 a^Tx≤a^Tx_0 aTxaTx0 for all x ∈ C x∈C xC,then the hyperplane { x ∣ a T x = a T x 0 } \{x|a^Tx=a^Tx_0\} {xaTx=aTx0} is called a supporting hyperplane to C C C at the point x 0 x_0 x0.

在这里插入图片描述

2.6 Dual cones, generalized inequalities

2.6.1 Dual cones

If K K K is a cone, then K ∗ = { y ∣ x T y ≥ 0 , x ∈ K } K^*=\{ y\mid x^Ty\geq0,x\in K \} K={yxTy0,xK} is the dual cone of K K K, it is always convex.

在这里插入图片描述

2.6.2 Dual generalized inequalities

Dual generalized inequalities is the one of K ∗ K^* K.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值