Convex Optimization 读书笔记 (9)

Chapter10: Equality constrained minimization

10.1 Equality constrained minimization problems

Consider a optimization problem:
m i n i m i z e      f ( x ) s u b j e c t   t o      A x = b \begin{aligned} {\rm minimize} \ \ \ \ & f(x) \\ {\rm subject \ to} \ \ \ \ & Ax=b \end{aligned} minimize    subject to    f(x)Ax=bwhere f : R n → R f : \mathbf{R}^n → \mathbf{R} f:RnR is convex and twice continuously differentiable, and A ∈ R p × n A ∈ \mathbf{R}^{p×n} ARp×n with r a n k   A = p < n \mathbf{rank} \ A = p < n rank A=p<n. Solving this is equal to solve the problem below:
A x ∗ = b ,      ∇ f ( x ∗ ) + A T ν ∗ = 0 Ax^*=b, \ \ \ \ \nabla f(x^*)+A^T\nu^*=0 Ax=b,    f(x)+ATν=0The first set of equations, A x = b Ax = b Ax=b, are called the primal feasibility equations, which are linear. The second set of equations, ∇ f ( x ⋆ ) + A T ν ⋆ = 0 ∇f(x^⋆) + A^T ν^⋆ = 0 f(x)+ATν=0, are called the dual feasibility equations, and are in general nonlinear.

10.1.1 Equality constrained convex quadratic minimization

Consider the equality constrained convex quadratic minimization problem
m i n i m i z e      f ( x ) = 1 2 x T P x + q T x + r s u b j e c t   t o      A x = b \begin{aligned} {\rm minimize} \ \ \ \ & f(x)=\frac{1}{2}x^TPx+q^Tx+r\\ {\rm subject \ to} \ \ \ \ & Ax=b \end{aligned} minimize    subject to    f(x)=21xTPx+qTx+rAx=bwhere P ∈ S + n P\in \mathbf{S}^n_+ PS+n and A ∈ R p × n A\in \mathbf{R}^{p×n} ARp×n. Here the optimality conditions are
A x ⋆ = b ,      P x ⋆ + q + A T ν ⋆ = 0 , Ax^⋆ =b, \ \ \ \ Px^⋆ +q+A^Tν^⋆ =0, Ax=b,    Px+q+ATν=0,which we can write as
[ P A T A 0 ] [ x ∗ ν ∗ ] = [ − q b ] \left[ \begin{array}{cc} P & A^T \\ A & 0 \end{array} \right] \left[ \begin{array}{cc} x^* \\ \nu^* \end{array} \right]= \left[ \begin{array}{cc} -q \\ b \end{array} \right] [PAAT0][xν]=[qb]This set of n + p n + p n+p linear equations in the n + p n + p n+p variables x ⋆ , ν ⋆ x^⋆, \nu^⋆ x,ν is called the KKT system for the equality constrained quadratic optimization problem.

10.1.2 Eliminating equality constraints

One general approach to solving the equality constrained problem is to eliminate the equality constraints, and then solve the resulting R n × ( n − p ) \mathbf{R}^{n×(n−p)} Rn×(np) and vector x ~ ∈ R n \tilde{x} ∈ \mathbf{R}^n x~Rn that parametrize the (affine) feasible set:
{ x ∣ A x = b } = { F z + x ~ ∣ z ∈ R n − p } \{ x\mid Ax=b \}=\{ Fz+\tilde{x}\mid z\in \mathbf{R}^{n−p} \} {xAx=b}={Fz+x~zRnp}Here x ~ \tilde{x} x~ can be chosen as any particular solution of A x = b Ax = b Ax=b, and F ∈ R n × ( n − p ) F\in\mathbf{R}^{n×(n−p)} FRn×(np) is any matrix whose range is the nullspace of A A A. Then we minimize the problem:
m i n i m i z e      f ( x ) = ( F z + x ~ ) \begin{aligned} {\rm minimize} \ \ \ \ & f(x)=(Fz+\tilde{x})\\ \end{aligned} minimize    f(x)=(Fz+x~)

10.1.3 Solving equality constrained problems via the dua

Another approach is to solve the dual, and then recover the optimal primal variable x ⋆ x^⋆ x,
m a x i m i z e      − b T ν − f ∗ ( − A T ν ) {\rm maximize} \ \ \ \ -b^T\nu-f^*(-A^T\nu)\\ maximize    bTνf(ATν)

10.2 Newton’s method with equality constraints

The initial point must be feasible and we need to make sure that the Newton step ∆ x n t ∆x_{\rm nt} xnt is a feasible direction: A ∆ x n t = 0 A∆x_{\rm nt} = 0 Axnt=0.

10.2.1 The Newton step

We replace the objective with its second-order Taylor approximation near x x x, to form the problem
m i n i m i z e      f ^ ( x + v ) = f ( x ) + ∇ f ( x ) T v + 1 2 v T ∇ 2 f ( x ) v s u b j e c t   t o      A ( x + v ) = b \begin{aligned} {\rm minimize} \ \ \ \ & \hat{f}(x+v)=f(x)+\nabla f(x)^Tv+\frac{1}{2}v^T\nabla^2f(x)v\\ {\rm subject \ to} \ \ \ \ & A(x+v)=b \end{aligned} minimize    subject to    f^(x+v)=f(x)+f(x)Tv+21vT2f(x)vA(x+v)=bThe Newton step of a constrained problem should satisfy
[ ∇ 2 f ( x ) A T A 0 ] [ Δ x n t w ] = [ − ∇ f ( x ) 0 ] \left[ \begin{array}{cc} \nabla^2f(x) & A^T \\ A & 0 \end{array} \right] \left[ \begin{array}{cc} \Delta x_{\rm nt} \\ w \end{array} \right]= \left[ \begin{array}{cc} -\nabla f(x) \\ 0 \end{array} \right] [2f(x)AAT0][Δxntw]=[f(x)0]

10.2.2 Newton’s method with equality constraints

The outline of Newton’s method with equality constraints is exactly the same as for unconstrained problems.

10.2.3 Newton’s method and elimination

10.2.4 Convergence analysis

In particular, the practical performance of New- ton’s method with equality constraints is exactly like the performance of Newton’s method for unconstrained problems. Once x ( k ) x^{(k)} x(k) is near x ⋆ x^⋆ x, convergence is extremely rapid, with a very high accuracy obtained in only a few iterations.

10.3 Infeasible start Newton method

10.3.1 Newton step at infeasible points

We substitute x + ∆ x x + ∆x x+x for x ⋆ x^⋆ x and w w w for ν ⋆ \nu^⋆ ν in the optimality conditions, and use the first-order approximation
∇ f ( x + Δ x ) ≈ ∇ f ( x ) + ∇ 2 f ( x ) Δ x \nabla f(x+\Delta x) \approx \nabla f(x) +\nabla ^2f (x) \Delta x f(x+Δx)f(x)+2f(x)Δxfor the gradient to obtain
A ( x + ∆ x ) = b ,      ∇ f ( x ) + ∇ 2 f ( x ) ∆ x + A T w = 0. A(x + ∆x) = b, \ \ \ \ ∇f(x) + ∇^2f(x)∆x + A^T w = 0. A(x+x)=b,    f(x)+2f(x)x+ATw=0.This is a set of linear equations for ∆ x ∆x x and w w w,
[ ∇ 2 f ( x ) A T A 0 ] [ Δ x n t w ] = [ − ∇ f ( x ) A x − b ] \left[ \begin{array}{cc} \nabla^2f(x) & A^T \\ A & 0 \end{array} \right] \left[ \begin{array}{cc} \Delta x_{\rm nt} \\ w \end{array} \right]= \left[ \begin{array}{cc} -\nabla f(x) \\ Ax-b \end{array} \right] [2f(x)AAT0][Δxntw]=[f(x)Axb]

10.3.2 Infeasible start Newton method

在这里插入图片描述

10.3.3 Convergence analysis

We show that once the norm of the residual is small enough, the algorithm takes full steps (which implies that feasibility is achieved), and convergence is subsequently quadratic. We also show that the norm of the residual is reduced by at least a fixed amount in each iteration before the region of quadratic convergence is reached.

10.3.4 Convex-concave games

We can use the infeasible start Newton method to compute a solution of a convex-concave game with twice differentiable payoff function. We define the residual as
r ( u , v ) = ∇ f ( u , v ) = [ ∇ u f ( u , v ) ∇ v f ( u , v ) ] r(u,v) = ∇f(u,v) = \left[ \begin{array}{c} \nabla_uf(u,v) \\ \nabla_vf(u,v) \end{array} \right] r(u,v)=f(u,v)=[uf(u,v)vf(u,v)]

10.3.5 Examples

10.4 Implementation

10.4.1 Elimination

To implement the elimination method, we have to calculate a full rank matrix F F F and an x ~ \tilde{x} x~ such that
{ x ∣ A x = b } = { F z + x ~ ∣ z ∈ R n − p } \{ x\mid Ax=b \}=\{ Fz +\tilde{x}\mid z\in\mathbf{R}^{n-p} \} {xAx=b}={Fz+x~zRnp}

10.4.2 Solving KKT systems

10.4.3 Examples

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值