visual prediction中的几个metrics

本文详细介绍了视觉预测中常用的三种度量标准:结构相似度(SSIM)、峰值信噪比(PSNR)和学习感知图像块相似度(LPIPS)。SSIM基于亮度、对比度和结构的比较;PSNR通过计算MSE来衡量图像质量,值越高图像质量越好;LPIPS利用深度网络激活作为感知差异的指标,值越低表示图像越相似。
摘要由CSDN通过智能技术生成

这里记录一下在Visual Prediction中用到的几种metrics:

The structural similarity (SSIM)

在这里插入图片描述
其中
在这里插入图片描述
SSIM的公式基于样本xy之间的三个比较衡量:亮度 (luminance)、对比度 (contrast) 和结构 (structure)。
在这里插入图片描述
所以SSIM也可以写成这三个部分的组合
在这里插入图片描述
其中alpha,beta, gama和为1。

  • SSIM的计算方式为:
  def cal_ssim(im1,im2):
      assert len(im1.shape) == 2 and len(im2.shape) ==
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值