大数定律与中心极限定理

大数定律

大数定律是一种自然规律,从另一方面来讲,也是一种判断标准。

意义:样本均值依概率收敛与总体期望。

说白了就是描述了为什么能够在实验次数足够多时,“频率到概率”的转化。

大数定律的定义

X 1 , X 2 , . . . X_1,X_2,... X1,X2,...是随机变量序列,若存在随机变量X,使对任意的 ε > 0 \varepsilon >0 ε>0恒有
lim ⁡ n → ∞ P { ∣ X n − x < ∣ ε } = 1 \lim _{n \to \infin}P\{|X_n-x<|\varepsilon\}=1 nlimP{Xnx<ε}=1
或等价地有
lim ⁡ n → ∞ P { ∣ X n − x ≥ ∣ ε } = 0 \lim _{n \to \infin}P\{|X_n-x\ge|\varepsilon\}=0 nlimP{Xnxε}=0
则称随机变量序列 { X n } \{X_n\} {Xn}依概率收敛 X X Xb,记作 X n → P X X_n \xrightarrow {P}X XnP X lim ⁡ n → ∞ X n = X ( P ) \lim_{n \to \infin}X_n = X(P) limnXn=X(P)

表现形式

后面提到的切比雪夫大数定律、辛钦大数定律和伯努利大数定律都是它的不同表现形式

详细内容看这篇文章

https://blog.csdn.net/xq151750111/article/details/120439438

强大数定律与弱大数定律

弱大数定律指明了可以使用样本的均值估计总体的均值

中心极限定理

这部分不是在研究对于一组样本空间,抽一次的分布情况,而是抽很多次的结果组成的新样本空间,它的分布。也就是对于不管怎么样的一种分布,反复抽多次的结果汇总到一块,符合一种正态分布。

当然,前提是相互独立,也就是抽一次不会影响此后的抽取结果的概率。

大量独立随机变量的和经过适当标准化后趋近于正态分布,这与变量的原分布无关

这里主要提到了两个定理

  • 林德伯格-勒维中心极限定理(又称独立同分布中心极限定理)
  • 拉普拉斯中心极限定理

独立同分布的中心极限定理

当n很大时有
∑ i = 1 n X i ∼ N ( n μ , n σ 2 ) \sum_{i=1}^n X_i \sim N(n\mu, n \sigma^2) i=1nXiN(nμ,nσ2)
或者说只要n足够大,就可以将独立同分布的随机变量之和当作正态变量

需要注意的是这里的 μ 、 σ \mu、\sigma μσ,这是单次的,但是要重复 n n n次,切勿搞混。

使用前提:具有有限的数学期望和方差

拉普拉斯中心极限定理

使用前提:服从二项分布 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)

意义是对与 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p) Y = x − μ σ   N ( 0 , 1 ) Y=\frac{x-\mu}\sigma~N(0,1) Y=σxμ N(0,1),也就是将X标准化(这里与题目对应的操作就是查表,因为给的数据都是标准化的数据)

例题

这类例题所求的总与一个正态分布的概率有关,这个概率可以转化为 Φ ( Y ) \Phi(Y) Φ(Y)表示,进而将所求转化为于 Y Y Y有关的东西。

例1

在一零售商店中,其结账柜台为各顾客服务的时间(单位为分钟)是相互独立同分布的随机变量,其均值为1.5,方差为1。求对100位顾客总服务时间不多于2小时的概率。


考查独立同分布的中心极限定理,有

∑ i = 1 100 X i ∼ N ( 150 , 1 0 2 ) \sum_{i=1}^{100}X_i \sim N(150,10^2) i=1100XiN(150,102)

这里来源是因为上面提到的 ∑ i = 1 n X i ∼ N ( n μ , n σ 2 ) \sum_{i=1}^n X_i \sim N(n\mu, n \sigma^2) i=1nXiN(nμ,nσ2)

其中 n = 100 n=100 n=100
不多于2h即小于等于120(单位化为分钟)。但是上面那个正态分布不是标准的,所以先给他标准化(方便下一步查表操作),标准化的方法见拉普拉斯中心极限定理
Y = x − μ σ = 120 − 150 10 = − 3 ∼ N ( 0 , 1 ) = Φ ( − 3 ) = 1 − Φ ( 3 ) Y=\frac{x-\mu}\sigma=\frac{120-150}{10}=-3 \sim N(0,1) = \Phi(-3)=1-\Phi(3) Y=σxμ=10120150=3N(0,1)=Φ(3)=1Φ(3)
然后你就开始查表去了,发现 Φ ( 3 ) = 0.9987 \Phi(3)=0.9987 Φ(3)=0.9987,所以 1 − 0.9987 = 0.0013 1-0.9987=0.0013 10.9987=0.0013,也就是答案是0.0013

例2

某单位设置一台电话总机,共有200个分机,设每个分机有0.05的时间要使用外线通话,各个分机要使用外线与否是相互独立的。该单位需要多少外线才能保证每个分机使用外线时可供使用的概率不低于0.9?


对于使用外线的分机数有 X ∼ B ( 200 , 0.05 ) X \sim B(200,0.05) XB(200,0.05),标准化一下, Y = x − μ σ Y=\frac{x-\mu}\sigma Y=σxμ
其中期望 μ = n p = 10 \mu=np=10 μ=np=10,方差 σ 2 = n p ( 1 − p ) = 9.5 \sigma^2=np(1-p)=9.5 σ2=np(1p)=9.5
也就是有
X − 10 9.5 ∼ N ( 0 , 1 ) \frac{X-10}{\sqrt{9.5}} \sim N(0,1) 9.5 X10N(0,1)
那么让概率不低于0.9,查表可知第一个大于等于0.9的值是1.28,也就是有

n − 10 9.5 ≥ 1.28 \frac{n-10}{\sqrt{9.5}} \ge 1.28 9.5 n101.28
解出 n ≥ 13.95 n \ge 13.95 n13.95,取整得14。

参考

https://blog.csdn.net/qq_38984677/article/details/81169943
https://blog.csdn.net/weixin_42031518/article/details/102554134
https://blog.csdn.net/xq151750111/article/details/120439438
https://zhuanlan.zhihu.com/p/25241653
https://zhuanlan.zhihu.com/p/104559816

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值