【论文解读】DLDL: Deep Label Distribution Learning With Label Ambiguity(年龄估计)

该博客介绍了一种解决年龄估计问题的新方法——深度学习动态标签分布(DLDL)。由于年龄估计的特性既非纯粹的回归亦非简单的分类,作者通过将年龄标签转换为离散的概率分布并使用KL散度拟合,解决了标签模糊性和连续性的问题。DLDL方法在小规模训练集上能有效防止过拟合,并在年龄估计、头位估计以及多标签分类和语义分割任务上展现出优越的性能。
摘要由CSDN通过智能技术生成

1. 介绍

论文地址https://arxiv.org/pdf/1611.01731v2.pdf

代码https://github.com/gaobb/DLDL

针对问题:年龄估计

(1)缺乏精确标签的训练图像;

(2)既不属于回归问题,也不属于分类问题;

  • 回归问题的回归曲线是静态的,而年龄估计是 每个人服从单独的回归曲线,是动态的;
  • 标签间存在模糊的信息,   使得这些任务不同于传统的分类任务,   softmax仅仅强调了类间差异的最大化,却忽略了年龄问题本身的连续性。

主要贡献

(1)将每幅图像的标签转换为离散的 标签分布,并利用KL散度拟合标签分布;

(2)提出的DLDL方法在特征学习和分类器学习中都有效地利用了标签的模糊性,即使训练集很小,也能有效地防止网络的过度拟合;

(3)结果表明,该方法比现有的年龄估计和头位估计方法具有更好的估计效果。同时,它也提高了多标签分类和语义分割任务的识别性能。

     

2. 方法

理想的标签分布y=(y1,y2,...,yC)必须满足一些基本原则:

  • y应该是一个概率分布;
  • 概率值i应在与图像相关联的所有可能标签之间存在差异。 即一个不那么模棱两可的类别必须被赋予高概率,而那些更模棱两可的标签必须具有低概率

为达到这两个原则,文章的主要思想是将真实年龄转换成以该年龄值为均值的正态分布,即:

用softmax拟合该正态分布:

最后的预测年龄有两种方法获得:

3. 实验

(1)评价指标

(2)标签分布

(3)实验结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值