1. 介绍
论文地址:https://arxiv.org/pdf/1611.01731v2.pdf
代码:https://github.com/gaobb/DLDL
针对问题:年龄估计
(1)缺乏精确标签的训练图像;
(2)既不属于回归问题,也不属于分类问题;
- 回归问题的回归曲线是静态的,而年龄估计是 每个人服从单独的回归曲线,是动态的;
- 标签间存在模糊的信息, 使得这些任务不同于传统的分类任务, softmax仅仅强调了类间差异的最大化,却忽略了年龄问题本身的连续性。
主要贡献:
(1)将每幅图像的标签转换为离散的 标签分布,并利用KL散度拟合标签分布;
(2)提出的DLDL方法在特征学习和分类器学习中都有效地利用了标签的模糊性,即使训练集很小,也能有效地防止网络的过度拟合;
(3)结果表明,该方法比现有的年龄估计和头位估计方法具有更好的估计效果。同时,它也提高了多标签分类和语义分割任务的识别性能。
2. 方法
理想的标签分布y=(y1,y2,...,yC)必须满足一些基本原则:
- y应该是一个概率分布;
- 概率值i应在与图像相关联的所有可能标签之间存在差异。 即一个不那么模棱两可的类别必须被赋予高概率,而那些更模棱两可的标签必须具有低概率
为达到这两个原则,文章的主要思想是将真实年龄转换成以该年龄值为均值的正态分布,即:
用softmax拟合该正态分布:
最后的预测年龄有两种方法获得:
3. 实验
(1)评价指标
(2)标签分布
(3)实验结果