最新年龄估计综述(Deep learning approach for facial age classification: a survey of the state of the art)

目录

@[TOC](文章目录)

#一、常用数据集

#二、常用的年龄识别方法

#1.多分类(MC)

#2.度量回归(metric regression,MR)

#3.排序(ranking)

#4.深度标签分布学习(deep label distribution learning,DLDL)

#5.混合(结合两种或者更多的技术)

#三、年龄识别的评价指标

#1.MAE

#2.CS(Cumulative Score)

#3.Exact accuracy

#4.Normal Score (ε-error)

#四、参考文献

论文名:Deep learning approach for facial age classification: a survey of the state of the art

链接:https://pan.baidu.com/s/1_psq6iUu77KTwJQW0eEh5A 
提取码:8gdm

主要是对论文的一个翻译,分为数据集、常用方法和评价指标三部分

一、常用数据集

本人最近在使用AFAD数据集做实验,该数据集来自人人网(https://github.com/afad-dataset/tarball-lite)。

IMDB-WIKI数据集(很多人脸提取不出来,因此后续就没有在此数据集上进行实验):链接:https://pan.baidu.com/s/1cn3UHM67WIMiaaN581ubxQ 提取码:mqo6

MORPH数据集(没找到标签):链接:https://pan.baidu.com/s/1RCoTww5eE27gpMEvaMXetw 提取码:zcic

CACD数据集论文中介绍说是更适合用来做对抗年龄变化的人脸识别,因此后续也没有继续在上面进行实验。

近年来在在这些数据集上发表的论文情况如下:

由此可见,MORPH-II最受欢迎,可是这个数据集的标签我实在找不到啊,官网申请数据集没有动静。

#二、常用的年龄识别方法

年龄识别算法可以分为多分类方法(multi-class,MC)、度量回归(metric regression,MR),排序(ranking),深度标签分布学习(deep  label distribution learning,DLDL)和混合(结合两种或者更多的技术,hyrid)

汇总表格如下:

具体如下,对于我比较感兴趣的论文会附上一些网络框架截图:

#1.多分类(MC)

多分类的方法将年龄值或者年龄组视为一个独立的label。MC算法不考虑其他类别使ground truth类别标签的概率最大化。有限的训练样本和大多数面部数据集类别不平衡导致过拟合问题。

(1)Levi和Hassncer(2015年)[1]用了一个包含三层卷积层和两层全连接层的浅层CNN结构来学习特征表征。简单的结构减缓过拟合,同时也使用了dropout正则化和数据增强来限制过拟合的风险。尽管结构简单,在Adience数据集上得到的结果比现存方法好。

(2)Rothe(2015)[2]应用DEX(Deep EXpection of apparent age)来估计外观年龄。网络框架为在ImageNet上预训练的VGG16.他们从IMDb和Wikipedia网站上收集了500000照片,是最大的公开面部年龄数据集。DEX将回归问题定义为softmax期望值refine的分类问题,这种方法比直接进行回归训练有一个提升。DEX在裁剪后的人脸上集成了20个网络,获得了2015 ChaLearn LAP第一名。

(3)Malli(2016)[3]集成深度学习网络来实现外观年龄预测,使用在IMDb-WIKI数据集上预训练的VGG16进行微调。他们发现个体的外观年龄和实际年龄不同。实际年龄与单个年龄标签相关联,而表观年龄具有与面部图像相关联的多个年龄标签。 为了解决该问题,他们将限定年龄范围内的面部图像分类在一起。 他们使用这些年龄段及其年龄分组对一组深度学习模型进行了训练,然后将这些模型的输出进行组合以获得最终估计值。 他们通过使用“自适应数据扩充”解决了与数据集相关的年龄分布不平衡的问题。

(4)Agustsson(2017)[4]提出Residual DEX来提高原始DEX回归器的性能。原始的DEX从输入图片中提取鲁棒特征来粗略估计年龄,提出的Residual DEX通过一个特定模型来处理粗略DEX估计和ground truth labels之间的残差。新的“回归”模型可以进行校正,并且还改善了“原始DEX”的性能,显示了年龄估算任务的改进。 作为解决方案的一部分,他们开发了一个大型的人脸图像数据集“ APPA-REAL”,其中包含真实年龄和外观年龄的注释。

(5)Anand(2017)[5]应用后处理的方法来提高预训练深度网络的性能。该方法在最终预测年龄前使用特征融合来减少特征空间的维度。

(6)Aydogdu和Demirci(2017)[6]提出优化的深度CNN来进行年龄预测任务。提出的CNN结构中包含四个卷积层和两个全连接层。

(7)Qawaqneh(2017)[7]使用VGG-Face网络进行微调并预测年龄。

(8)Zhang(2017)[8]提出Residual Networks of Residual Networks (RoR)进行自然状况下的年龄分组和性别估计。RoR模型在IMDb-WIKI-101和adience数据集上微调之前,在ImageNet数据集上进行预训练。

(9)Shara和Shemitha(2018) [9]提出了一种基于VGG脸部网络的多深度CNN用于面部年龄估计。 年龄估算方法涉及三个不同阶段:“训练”阶段,“特征提取”阶段和“测试”阶段。 他们还收集了10,000多个带有年龄标签的面部图像。 他们通过基于CNN的深度模型从年龄差异的面部图像中提取年龄信息。 该方法利用模型顶层的“对称Kullback-Leibler发散损失函数”,并使用“标签分布”作为损失函数。

(10)Rothe(2018)[10]是Rothe(2015)工作的期刊版

(11)Nam(2020)[11]解决低像素图片年龄估计问题。通过一个cGAN模型将低像素人脸重构为高像素人脸。

(12)Agbo-Ajala和Viriri(2020)[12]用基于CNN的模型对未受限制的真实场景下的图片进行年龄和性别的分类。

#2.度量回归(metric regression,MR)

基于度量回归的算法将年龄类别视为线性渐进关系,并且不显示age方法的多样性。 它使用适当的正则化方法从特征空间中学习最适合年龄值空间映射的特征。 虽然,将年龄估计任务作为MR问题来处理是很正常的,这确实使平均绝对误差(MAE)结果最小化,并提高了估计准确性。 但是,MR会生成不稳定的训练模式,从而导致较大的误差项,从而影响准确性。

《基于深度学习的面部表情识别:一项调查》是一篇发表在IEEE Access期刊上的论文。本论文综述了基于深度学习的面部表情识别的最新研究进展。 面部表情识别是计算机视觉领域的重要研究方向之一,广泛应用于情感分析、人机交互、虚拟角色等领域。传统的面部表情识别方法常常需要手工提取特征,且受到光照、姿态等因素的限制。而基于深度学习的面部表情识别则无需手工设计特征,可以从原始像素中直接学习特征表示,因此能够更好地解决这些问题。 本文首先介绍了深度学习在面部表情识别中的应用,包括卷积神经网络(CNN)和循环神经网络(RNN)等。CNN在面部表情识别中起到了关键作用,它可以提取图像的空间特征。RNN则主要用于处理序列化的面部表情数据,可以捕捉到表情的动态变化。 接着,本文概述了深度学习在面部表情识别中的不同应用场景,包括静态图像识别、视频序列识别和实时识别等。在静态图像识别中,通过对单张图像进行分析得出表情类别。在视频序列识别中,可以利用RNN结合CNN对连续视频帧进行处理,从而对表情做出连续预测。在实时识别中,需要实时地对实时视频流中的表情进行识别,对算法的实时性提出了挑战。 最后,本文总结了当前基于深度学习的面部表情识别的挑战和未来的研究方向。尽管深度学习在面部表情识别中取得了显著进展,但仍然存在一些挑战,如样本不平衡、多标签问题和泛化能力等。未来的研究可以探索更加有效的网络架构和训练方法,以提高面部表情识别的性能和适应性。 总之,本论文通过深入调查和总结,对基于深度学习的面部表情识别进行了详细介绍,并提出了未来的研究方向,对相关领域的学者和研究人员具有一定的参考价值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值