Scene Graph
简而言之,视觉关系识别/检测任务不仅需要识别出图像中的物体以及他们的位置,还要识别物体之间的关系,即目标物体之间的联系,可以表示为一个三元组Triplet——Relationship: <object1 - predicate - object2>
主要相关的任务有三种:Predicate classification,只需要预测关系。Scene graph classification需要得到对象和关系。Scene graph detection/gen还要定位到框box的对象和关系。
Visual Relationship Detection with Language Priors
ECCV2016,开山之作,公开了一个数据集VRD,包含5000张图片,6000多个关系,平均每个对象有24个关系谓词。其他相关数据集:Scene graph,VIsual phrases,VIsual Genome。
处理方法主要是:
- 先对图像用RCNN等目标检测算法得到一些目标,构成目标对
- 再分别经过一个视觉模型和一个语言模型。视觉模型是用CNN提取object-pair联合的box的特征,再结合他们的类似然度得到关系元组的视觉似然度。语言模型是将目标对的word词向量映射到一个embedding space,其中嵌入空间k是谓词数量,所以能得到两个目标对象间的关系的语言上的似然度。
- 最后两者相乘得到最后的关系三元组似然度可能性,就是预测的结果。<