大模型的能力让学术和工业界都对通用人工智能的未来充满幻想,在前一篇博文中已经粗略介绍,
ALM的两大思路是推理和工具,本篇博文整理两篇关于Toolformer或Tool Learning的论文,即如何允许模型使用多种工具如日历、计算器、搜索系统等等来帮助提升LLMs的能力。
Toolformer: Language Models Can Teach Themselves to Use Tools
来自Meta AI。LLMs已经展现出十分出色的zero-shot和few-shot能力,特别是在规模上,但它们在基本功能方面也遇到了困难,比如算术、最新信息、幻觉,但在这些方面,显然更简单、更小的模型表现更好。 因此,一个简单的方法就是让它们能够使用外部工具,比如搜索引擎、计算器或日历(如下图所示,该模型自动决定调用不同的api实验任务,从上到下依次是:问答系统、计算器、翻译和维基百科搜索)。然而现有的方法要么依赖于大量的人工注释或将工具的使用限制为仅针对特定任务的,这阻碍了其在LLMs中更广泛地使用。
因此作者们引入了Toolformer,一个被训练以学习使用工具的模型,它有两个特点:
- 自监督。不仅仅与大量的人工注释成本有关,还因为人类认为有用的东西可能与模型认为有用的东西不同。
- 一般性。LLMs应该能够自己决定何时以及如何使用哪个工具,这可以得到一个更通用的工具。
为了使LLMS能够通过API调用来使用不同的工具,每个API的输入和输出都需要被表示为文本序列,从而可以将API调用无缝插入到任何给定的文本中,其中插入时使用特殊的令牌来标记即可(“”和“→” )。 e ( c ) = < A P I > a c ( i c ) < / A P I > e(c)=<API>a_c(i_c)</API> e(c)=<API>ac(ic)</API> e ( c , r ) = < A P I > a c ( i c ) → r < / A P I > e(c,r)=<API>a_c(i_c)→ r</API> e(c,r)=<