用数学公式的角度来推导傅里叶变换

本文深入浅出地讲解了傅里叶变换的核心概念,从完备的三角正交基础出发,逐步推导出傅里叶级数的三角形式和指数形式。通过详细的数学公式推导,帮助读者理解傅里叶变换的本质。

用数学公式的角度理解傅里叶变换

我们觉得傅里叶变换太难,除了它的概念不好理解之外,最重要的原因是高数没有学好,最基本的积分微分三角函数都不理解,这怎么能学好呢?比如书上给你一个最简单的公式,因为别人觉得这个公式太简单了,只要稍微学过高数的人都能推导出来,但是你的高数在一年级是没有好好学,到了二年级就基本全部忘光了。这学期来学习信号与系统当然难。不过没关系,本文将带你用最基本的数学公式来理解最复杂的傅里叶变换,包括指数形式和三角形式的傅里叶变换。

什么是完备的三角正交基础?

在这里插入图片描述在这个集合中任意两个函数不同的函数在一个周期内(如(−π,π)(-\pi, \pi)(π,π))的上下定积分为0。∫t1t2f1(t)f2(t)dt=0\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}(t) d t=0t1t2f1(t)f2(t)dt=0。则称f1(t)f2(t)f_{1}(t) f_{2}(t)f1(t)f2(t)在区间(t1,t2)\left(t_{1}, t_{2}\right)(t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果果小师弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值