用数学公式的角度理解傅里叶变换
我们觉得傅里叶变换太难,除了它的概念不好理解之外,最重要的原因是高数没有学好,最基本的积分微分三角函数都不理解,这怎么能学好呢?比如书上给你一个最简单的公式,因为别人觉得这个公式太简单了,只要稍微学过高数的人都能推导出来,但是你的高数在一年级是没有好好学,到了二年级就基本全部忘光了。这学期来学习信号与系统当然难。不过没关系,本文将带你用最基本的数学公式来理解最复杂的傅里叶变换,包括指数形式和三角形式的傅里叶变换。
什么是完备的三角正交基础?
在这个集合中任意两个函数不同的函数在一个周期内(如(−π,π)(-\pi, \pi)(−π,π))的上下定积分为0。∫t1t2f1(t)f2(t)dt=0\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}(t) d t=0∫t1t2f1(t)f2(t)dt=0。则称f1(t)f2(t)f_{1}(t) f_{2}(t)f1(t)f2(t)在区间(t1,t2)\left(t_{1}, t_{2}\right)(t

本文深入浅出地讲解了傅里叶变换的核心概念,从完备的三角正交基础出发,逐步推导出傅里叶级数的三角形式和指数形式。通过详细的数学公式推导,帮助读者理解傅里叶变换的本质。
最低0.47元/天 解锁文章
3631

被折叠的 条评论
为什么被折叠?



