论文阅读笔记:小样本图像分类,Tip-Adapter

目录

一、论文信息

二、Introduction

1、动机

2、本文工作

三、相关工作

1、CLIP

2、CLIP + FSC

四、Methods

1、Tip-Adapter

2、Tip-Adapter-F

五、实验结果

1、在ImageNet上的对比实验

2、在其他数据集上的对比实验

3、选用不同的CLIP视觉编码器对实验结果的影响

4、消融实验

六、未来工作


一、论文信息

论文标题:Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

论文刊物:ECCV, 2022

论文地址:https://arxiv.org/pdf/2207.09519.pdf

论文代码:https://github.com/gaopengcuhk/Tip-Adapter

二、Introduction

1、动机

现有基于CLIP的小样本图像分类方法需要引入额外的训练参数。

2、本文工作

(1) Tip-Adapter。利用key-value cache model,不需要训练,取得了与之前方法相当的性能。

(2) Tip-Adapter-F。更新key-value cache model中的key,需要少量训练,取得了SOTA的结果。

三、相关工作

1、CLIP

CLIP的模型结构包括两个部分,即文本编码器和图像编码器。文本数据和图像数据 两者分别通过各自编码器编码后,使用对比学习的思想,将匹配的文本-图像对的Embedding之间的距离拉近,将不匹配的Embedding之间的距离拉远。通过在大量数据集上的预训练,CLIP获得了较强的零样本推理能力。

2、CLIP + FSC

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值