python实现识别多个物体返回中心坐标
- 最近翻翻github上自己以前的项目(大家觉得好的话,可以留下你们的star 嘿嘿),并分享出来和大家一起学习,当时做了一个弹幕机械臂识别物体中心并实现物体抓取的项目,其中弹幕机械臂识别物体的代码如下,和大家一起分享
- 核心代码如下
import imutils
import cv2
# 加载图片
file_path = 'E:\\PythonProjects\\tuxiangshibie\\485jixiebi\\baidu\\zuobiao'
image = cv2.imread("E:\\PythonProjects\\tuxiangshibie\\485jixiebi\\baidu\\test\Return_location\\test.png")
image = cv2.resize(image, (600, 600))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 灰度
blurred = cv2.GaussianBlur(gray, (5, 5), 0) # 5x5的内核的高斯平滑
thresh = cv2.threshold(blurred, 108, 255, cv2.THRESH_BINARY)[1] # 阈值化,阈值化后形状被表示成黑色背景上的白色前景。
cv2.imshow("Image", thresh)
# 在阈值图像中查找轮廓
# 找到白色对应的边界点的集合
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# 计算轮廓中心
for c in cnts:
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# 在图像上绘制形状的轮廓和中心
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
cv2.circle(image, (cX, cY), 7, (255, 255, 255), -1)
cv2.putText(image, "center", (cX - 20, cY - 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# 展示图片
cv2.imshow("Image", image)
with open(file_path, 'w') as w_obj:
w_obj.write(str(cX) +' ' + str(cY)+ "\n")
print(cX, cY)
cv2.waitKey(0)
项目地址