一、一种色块的监测追踪以及打印中心坐标
from collections import deque
import numpy as np
import cv2
import time
redLower = np.array([0, 80, 50]) #设定红色阈值,HSV空间
redUpper = np.array([8, 255, 220])
mybuffer = 64 #初始化追踪点的列表
pts = deque(maxlen=mybuffer)
#打开摄像头
if __name__ == '__main__':
cv2.namedWindow("camera",1)
video="http://192.168....:8081/" #自己IP摄像头的地址
camera =cv2.VideoCapture(video)
time.sleep(3)#等待两秒
while True: #遍历每一帧,检测红色瓶盖
#读取帧
(ret, frame) = camera.read()
if not ret:
print ('No Camera')
break
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #转到HSV空间
mask = cv2.inRange(hsv, redLower, redUpper) #根据阈值构建掩膜
mask = cv2.erode(mask, None, iterations=2) #腐蚀操作
mask = cv2.dilate(mask, None, iterations=2) #膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] #轮廓检测
center = None #初始化瓶盖圆形轮廓质心
#如果存在轮廓
if len(cnts) > 0:
#找到面积最大的轮廓
c = max(cnts, key = cv2.contourArea)
#确定面积最大的轮廓的外接圆
((center_x, center_y), radius) = cv2.minEnclosingCircle(c)
#计算轮廓的矩
M = cv2.moments(c)
#计算质心
cv2.circle(frame, (int(center_x), int(center_y)), int(radius), (0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
print('红色色块的中心坐标',(int(center_x),int(center_y)))
cv2.imshow('Frame', frame)
k = cv2.waitKey(5)&0xFF #键盘检测,检测到esc键退出
if k == 27:
break
camera.release() #摄像头释放
cv2.destroyAllWindows()#销毁所有窗口
对于IP摄像头陌生的同学可以看一下我之前的一篇博客https://blog.csdn.net/weixin_45870610/article/details/104970299
二、两种色块的监测追踪以及打印中心坐标
from collections import deque
import numpy as np
import cv2
import time
redLower = np.array([156, 43, 46]) #设定红色阈值,HSV空间
redUpper = np.array([180, 255, 255])
blueLower = np.array([100, 43, 46])
blueUpper = np.array([124, 255, 255])
mybuffer = 64 #初始化追踪点的列表
pts = deque(maxlen=mybuffer)
if __name__ == '__main__':
cv2.namedWindow("camera",1)
video="http://192.168....:8081/" #这里要改成你自己的IP摄像头的地址
camera =cv2.VideoCapture(video)
time.sleep(3)#等待两秒
while True: #遍历每一帧,检测红色瓶盖
#读取帧
(ret, frame) = camera.read()
if not ret:
print ('No Camera')
break
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #转到HSV空间
mask1 = cv2.inRange(hsv, redLower, redUpper) #根据阈值构建掩膜
mask2 = cv2.inRange(hsv, blueLower, blueUpper)
mask1 = cv2.erode(mask1, None, iterations=2) #腐蚀操作
mask2 = cv2.erode(mask2, None, iterations=2)
mask1 = cv2.dilate(mask1, None, iterations=2)#膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点
mask2 = cv2.dilate(mask2, None, iterations=2)
cnts1 = cv2.findContours(mask1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] #轮廓检测
cnts2 = cv2.findContours(mask2.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None #初始化瓶盖圆形轮廓质心
#如果存在轮廓
if len(cnts1) > 0:
c = max(cnts1, key = cv2.contourArea) #找到面积最大的轮廓
((red_x, red_y), radius) = cv2.minEnclosingCircle(c) #确定面积最大的轮廓的外接圆
M = cv2.moments(c) #计算轮廓的矩
cv2.circle(frame, (int(red_x), int(red_y)), int(radius), (0, 255, 255), 2) #计算质心
cv2.circle(frame, center, 5, (0, 0, 255), -1)
print('红:',(int(red_x),int(red_y)))
if len(cnts2) > 0:
c = max(cnts2, key = cv2.contourArea)
((blue_x, blue_y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
cv2.circle(frame, (int(blue_x), int(blue_y)), int(radius), (0, 0, 255), 2)
cv2.circle(frame, center, 5, (255, 0, 0), -1)
print('蓝:',(int(blue_x),int(blue_y)))
cv2.imshow('Frame', frame)
k = cv2.waitKey(5)&0xFF #键盘检测,检测到esc键退出
if k == 27:
break
camera.release() #摄像头释放
cv2.destroyAllWindows()#销毁所有窗口
'''
三种色块的:可以把这些加进去,道理是相同的
greenLower = np.array([35, 43, 46])
greenUpper = np.array([77, 255, 255])
mask3 = cv2.inRange(hsv, greenLower, greenUpper)
mask3 = cv2.erode(mask3, None, iterations=2)
mask3 = cv2.dilate(mask3, None, iterations=2)
cnts3 = cv2.findContours(mask3.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts3) > 0:
c = max(cnts3, key = cv2.contourArea)
((green_x, green_y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
cv2.circle(frame, (int(green_x), int(green_y)), int(radius), (255, 0, 0), 2)
cv2.circle(frame, center, 5, (0, 255, 0), -1)
print('绿:',(int(green_x),int(green_y)))
'''
这里大家要尽量找圆形的物体,家里实在找不到圆绿的了哈哈,不规则的物体的话得出的数据还是会有误差的;还有一种情况是没有办法识别出红色,但你觉得他就是红色的物体,那你可以适当调整一下HSV值,就没问题了
哈哈,一看就是初级菜鸟写的代码,希望对大家有所帮助,因为我最终的目标不是识别色块,所以还要进行更进一步的学习,所以这个博客之后还会更新,尽请期待吧。
有什么需不对的,或者需要改进的地方,还希望各位大神可以指正。