PointNet:Deep Learining on Point Sets for 3D Classification and Segmentation 论文解析

一. Abstract

二.Introduction

三.Related Work

四.Deep Learning on Point Sets

五.Theoretical Analysis

六.Experiment

一.Abstract

1.首先点云是一种重要几何数据结构的类型。

2.以往处理点云的方法:
鉴于点云的不规则形式可以将点云转换为3D体素网格或者图片集。

3.存在的缺点:
造成大量的数据冗余以及造成很多其他问题。

4.PointNet:
(1)直接使用点云(x,y,z)进行物体分类、部分分割,场景分割。
(2)PointNet是高效高性能的。
(3)对于噪音和数据污染有很强的鲁棒性。

一.Introduction

1.卷积要求输入数据形式的高度规则性为了实现权重共享以及其他的核优化,像图片网格以及3D体素。
2.点云网络是简单和统一结构,这样避免不规则和复杂的网格因此更容易进行学习。
3.PointNet是一个统一的体系结构,它直接将点云作为输入并输出整个输入的标签,或输入的每个点的每个点段/部件标签。在基本设置中,每个点都由它的三个坐标(x,y,z)表示。额外的维度可以通过计算法线和其他局部或全局特性来添加。
4.点云输入格式很容易应用刚性或仿射转换,因为每个点独立转换。因此,我们可以添加T-Net,它在处理数据之前对数据进行规范化,从而进一步改进结果
5.网络学会了用一组稀疏的关键点来概括一个输入点云,根据可视化,这些关键点大致对应于对象的骨架。提供了抗干扰能力,下图是可视化后的结果,可以看出一小块都是一个物体的骨架

在这里插入图片描述
6.本文的贡献:
(1)pointnet可以直接处理无规则的3D点云数据
(2)pointnet可以被训练用来进行分类,部分分割和场景语义分割
(3)对该方法的稳定性和有效性进行了深入的实证和理论分析
(4)举例说明了由网络中选定的神经元计算出的三维特征,并对其性能做出了直观的解释

三.Related Work

1.Deep Learning on 3D Data

(1)3D CNN应用于3D 数据中,然而体积表示被分辨率所限制由于数据稀疏, 3D卷积的计算消耗
(2)multiview CNNS:3D点云----Projection------2D图像-----conv------分类,该方法在形状分类和检索任务中取得了优异的性能。
(3)Spectral CNNs(光谱):应用在有机物,目前没有扩展到无机物物体上。
(4)Feature-based DNNs:首先将三维数据转换为矢量,提取形状特征,然后利用全连接网络对形状进行分类。

四.Deep Learning on Point Sets

1.无序性:与图像中的像素阵列或体素阵列不同,点云是一组没有特定顺序的点
2.点之间的交互:这些点来自一个距离度量的空间。这意味着点不是孤立的,相邻的点构成一个有意义的子集。因此,该模型需要能够从附近的点捕获局部结构,以及局部结构之间的组合交互。
3.平移不变性:作为一个几何对象,点集的学习表示应该不受某些变换的影响。例如,所有旋转和平移点都不应该修改全局点云类别或点的分割。

点云架构

在这里插入图片描述1.解决点云的无序性:
(1)每次进来点云都按一定规则去进行排序
(2)训练RNN使得每个点之间都有关联
(3)使用对称函数来聚集信息

Q:什么是对称函数 ?
A:输入n个向量,输出一个向量,输出向量不受输入向量的顺序影响。

缺点:(1)每次点云都进行排序浪费时间和提高了计算成本
(2)大规模数据的RNN网络太过复杂,精度变低并且难以训练

实现顺序不变性的三种方法,如下图所示
加粗样式

五.Theoretical Analysis

1. 首先证明了神经网络对连续集函数的普遍逼近能力
2.Hausdorff distance:
Hausdorff距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距离的一种定义形式:假设有两组集合A={a1,…,ap},B={b1,…,bq},则这两个点集合之间的Hausdorff距离定义为
  H(A,B)=max(h(A,B),h(B,A)) (1)
  其中,
  h(A,B)=max(a∈A)min(b∈B)‖a-b‖ (2)
  h(B,A)=max(b∈B)min(a∈A)‖b-a‖ (3)
  ‖·‖是点集A和B点集间的距离范式(如:L2或Euclidean距离).
  这里,式(1)称为双向Hausdorff距离,是Hausdorff距离的最基本形式;式(2)中的h(A,B)和h(B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff距离.即h(A,B)实际上首先对点集A中的每个点ai到距离此点ai最近的B集合中点bj之间的距离‖ai-bj‖进行排序,然后取该距离中的最大值作为h(A,B)的值.h(B,A)同理可得.
  由式(1)知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度.
 在这里插入图片描述
 3.解释一下:这是为了证明网络的拟合,当从S, S , S^, S,取任何值时,他们的豪斯道夫距离小于 σ \sigma σ,并且连续函数f(S)-f( S , S^, S,)小于 ϵ \epsilon ϵ

 在这里插入图片描述
 如果mlp能够满足精度则说明该网络可以拟合,其中h(),y()表示mlp,MAX代表maxpooling。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PointNet是一种深度学习模型,专门用于处理3D点云的分类和分割任务。它接受一个由点组成的集合作为输入,可以学习到每个点的特征表示,并将它们组合起来以获得整个点云的全局特征。PointNet还具有旋转不变性,因此可以处理具有不同旋转角度的点云数据。这使得PointNet成为3D视觉领域的重要工具,用于处理各种任务,例如物体检测、语义分割和场景重建等。 ### 回答2: PointNet是一种基于点集的深度学习架构,用于3D分类和分割任务。它于2017年由Qi et al.提出,并已在许多3D视觉应用中得到了广泛应用。PointNet的主要思想是将点云看作无序的点集,并设计了一种处理这种无序集合的新型神经网络。 传统上,对3D对象进行分类和分割的方法通常需要将对象转换为网格或体素,然后将其表示为规则形状的网格或体素。这些方法在处理复杂几何形状时存在一定的困难,并且采用的处理方法需要严格的输入格式。 相比之下,PointNet可以直接处理点云数据,不需要对其进行转换或训练数据格式的严格要求。在PointNet中,输入是一组点的集合,每个点有三个坐标和其他任意的属性,如颜色或法线。这些点无序,因此PointNet用最小误差投影(Minimum Error Projetion)来解决这个问题。这个网络的中心思想是使用点集的对称性,将输入点云映射到一个向量空间中,该空间旨在保留输入点集的所有信息。 为了处理点集的对称性,PointNet使用了两个网络——一个是点特征提取网络,另一个是全局特征提取网络。点特征提取网络处理单个点的信息,并产生一个新的点特征。全局特征提取网络则将所有点的特征表示合并到一个全局特征向量中。这种设计使PointNet可以生成对称空间中的全局特征向量,从而保持了输入的无序性质,并确保了在不同尺度和物体位姿下的泛化能力。 总的来说,PointNet为点云的处理提供了一种新颖的方式,可以在保持输入的无序性质和提高处理效率方面取得良好的表现。它的成功应用在3D分类和分割任务中证明了其高效性和实用性,并为未来的3D深度学习研究工作提供了有价值的经验。 ### 回答3: PointNet是一种用于3D分类和分割的深度学习算法。这种算法突破了传统方法中对于3D形状进行预测的限制,通过学习点云中点的全局特征来进行预测,并且在Caltech-101 或 ModelNet40等数据集上取得了远超其他算法的效果。 PointNet算法首先通过应用全连接网络将点云中的每个点转换成一个低维的向量表示。该算法还采用了一个局部特征学习模块,该模块仅对于每个点的局部序列进行操作,以捕获点云的局部特征。该算法使用了max pooling的形式将每个点的局部特征进行汇总,以得出整体的特征表示。最后,算法通过多个全连接层将点云的全局特征映射到所需的目标(如类别标签或分割结果)。 值得注意的是,PointNet算法在3D形状分类和分割问题上的效果非常显著,并且其鲁棒性非常好,即使在存在噪声和缺失数据的情况下,该算法也能够产生准确的结果。此外,PointNet算法还可以通过加入循环神经网络模块来实现对于时间序列数据的处理。 总的来说,PointNet算法是一种极具前景的深度学习算法,其具有高效、准确和鲁棒的特点,可以应用于3D形状预测、3D图像识别、机器人操作等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值