论文阅读(七):Dual-stream Maximum Self-attention Multi-instance Learning (DMSMIL)

引入

  很久没有看论文和写博客,现在把最近看的一篇多示例学习(MIL)的论文解读一下,希望有所收获。

前言

  该篇论文提出了一种由神经网络参数化的双流最大自注意的MIL模型(DSMIL);
  主要步骤:1)第一流部署了一个简单的 MIL max-pooling,并确定了top激活的嵌入实例;2)在第二个流中,通过仅将顶部激活的查询与包中的实例相关联,跨实例计算注意力得分。
  特点:基于相同的实例嵌入来训练一个实例分类器和包分类器。

方法

问题表述

  包: B = ( x 1 , y 1 ) , ⋯   , ( x n , y n ) B=(x_1,y_1), \cdots, (x_n,y_n) B=(x1,y1),,(xn,yn);实例: x i ∈ X x_i \in X xiX;实例标签: y i ∈ 0 , 1 y_i\in 0,1 yi0,1
  包的标签: c ( B ) = 1 − ∏ i = 1 n ( 1 − y i ) c(B)=1-\prod \limits_{i=1}^n{(1-y_i)} c(B)=1i=1n(1yi)
  假设有一些合适的变换 f f f g g g,则 c ( B ) = g ( f ( x 0 ) , ⋯   , f ( x n ) ) c(B)=g(f(x_0),\cdots,f(x_n)) c(B)=g(f(x0),,f(xn))
  关于函数 f f f g g g,MIL有两种模型处理方式:1) 基于实例的方法: f f f 是实例级别的分类器,它为每个实例生成一个类别评分, g g g 是一个池化运算符,用于汇总实例评分以生成袋评分;2) 基于嵌入的方法: f f f 是实例级特征提取器,将每个实例映射到一个嵌入, g g g 是一个聚合函数,它首先将所有实例嵌入映射到一个包嵌入,并根据该包嵌入生成一个包得分。

双流MIL聚合

   H = [ h 0 , … , h N − 1 ] ∈ R L × N \mathbf{H}=\left[\mathbf{h}_{0}, \ldots, \mathbf{h}_{N-1}\right] \in \mathbb{R}^{L \times N} H=[h0,,hN1]RL×N 是嵌入实例的包,其中 h i \mathbf{h}_i hi 是第 i i i 个实例的嵌入。
  第一个流是一个具有 MIL max-pooling 的实例级别分类器:
c m = max ⁡ { W 0 h 0 , … , W 0 h N − 1 } \mathbf{c}_{m}=\max \left\{\mathbf{W}_{0} \mathbf{h}_{0}, \ldots, \mathbf{W}_{0} \mathbf{h}_{N-1}\right\} cm=max{W0h0,,W0hN1}其中, W 0 \mathbf{W}_0 W0是一个全连接层的权值矩阵。
  第二个流从嵌入实例学习到嵌入包,并且学习包分类器给嵌入包打分。
  步骤1):通过第一流得到最优激活嵌入实例 h m \mathbf{h}_m hm,然后将嵌入实例转换成两个向量 :查询向量 q i ∈ R L × 1 \mathbf{q}_i\in \mathbb{R}^{L \times 1} qiRL×1 和 信息向量 v i ∈ R L × 1 \mathbf{v}_i \in \mathbb{R}^{L \times 1} viRL×1,
q i = W q h i , v i = W v h i , i = 0 , … , N − 1 \mathbf{q}_{i}=\mathbf{W}_{q} \mathbf{h}_{i}, \quad \mathbf{v}_{i}=\mathbf{W}_{v} \mathbf{h}_{i}, \quad i=0, \ldots, N-1 qi=Wqhi,vi=Wvhi,i=0,,N1, 其中 W q \mathbf{W}_q Wq W v \mathbf{W}_v Wv是两个全连接层的权值矩阵。
  步骤2):最大自注意力向量的每一个属性 a i a_i ai :
a i = exp ⁡ ( s i ) ∑ i = 0 N − 1 exp ⁡ ( s i ) , s i = ⟨ q i , q m ⟩ , i = 0 , … , N − 1 a_{i}=\frac{\exp \left(\mathrm{s}_{i}\right)}{\sum_{i=0}^{N-1} \exp \left(\mathrm{s}_{i}\right)}, \quad s_{i}=\left\langle\mathbf{q}_{i}, \mathbf{q}_{m}\right\rangle, \quad i=0, \ldots, N-1 ai=i=0N1exp(si)exp(si),si=qi,qm,i=0,,N1
  步骤3):嵌入包 b ∈ R L × 1 \mathbf{b} \in \mathbb{R}^{L \times 1} bRL×1:
b = ∑ i a i v i \mathbf{b}=\sum_{i} a_{i} \mathbf{v}_{i} b=iaivi其中,求和的操作是对每个元素都求和。
  步骤4):包的得分 c ∈ R L × 1 \mathbf{c}\in \mathbb{R}^{L \times 1} cRL×1:
c b = W 1 b \mathbf{c}_{b}=\mathbf{W}_{1} \mathbf{b} cb=W1b W 1 \mathbf{W}_1 W1 是一个全连接层的权值矩阵。
  步骤5):最后包的得分是两个流得分的权值和:
c ^ = ( 1 − λ ) c m + λ c b , λ ∈ [ 0 , 1 ] \hat{\mathbf{c}}=(1-\lambda) \mathbf{c}_{m}+\lambda \mathbf{c}_{b}, \quad \lambda \in[0,1] c^=(1λ)cm+λcb,λ[0,1]

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值