tensorflow2.x学习笔记十七:ImageDataGenerator的使用

本文介绍了TensorFlow2.x中ImageDataGenerator的使用,包括flow方法用于按需生成图像,flow_from_directory用于从指定目录批量读取图像,以及flow_from_dataframe方法结合DataFrame进行数据加载。通过这些方法,可以方便地对图像数据进行预处理和增强。
摘要由CSDN通过智能技术生成
tf.keras.preprocessing.image.ImageDataGenerator(
    featurewise_center=False, samplewise_center=False,
    featurewise_std_normalization=False, 
    samplewise_std_normalization=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐心的小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值