一文搞懂显卡

1. 显卡介绍

显卡(Graphics Card),也称为图形处理器(GPU),是一种用于处理和生成计算机图像的硬件设备。显卡在计算机系统中的作用至关重要。显卡可以用在游戏、视频编辑、3D建模和渲染、科学计算等领域,能够提升计算机的图形处理能力。

显卡根据其用途和性能可以分为以下几类:

  • 集成显卡:集成在CPU或主板上的图形处理单元,性能较低,适合普通办公和基础娱乐用途。

  • 独立显卡:独立的显卡,性能较高,适合游戏、专业图形处理和科学计算等需要高图形处理能力的应用。

  • 专业显卡:专为专业应用设计,如CAD、3D建模、视频编辑和科学计算等,具有更高的精度和稳定性。

图片

2. 显卡基本组成结构

图片

  • 图形处理器(GPU):显卡的核心组件,负责执行图形处理和计算任务。它具有高度并行的处理能力,适合处理大量的图形数据和复杂计算。

  • 显存(VRAM):用于存储图形数据和帧缓冲区。显存的容量和速度对显卡性能有很大影响。

  • 电路板(PCB):显卡的基础结构,承载着GPU、显存和其他电子元件,并提供电源和信号传输通道。

  • 接口:显卡通过接口与计算机主板和显示器连接。常见的接口有PCIe(与主板连接)和HDMI、DisplayPort、DVI(与显示器连接)。

  • 散热系统:主要分为风冷和水冷两种,用于冷却GPU和显存,确保显卡在高负载下稳定运行。

  • 风冷散热:适用于一般用户、预算有限的用户以及不进行超频的情况。对于大多数普通使用场景,风冷已经足够。

  • 水冷散热:适用于高性能用户、超频用户以及追求低噪音和美观的用户。特别是在显卡长期高负荷运行的情况下,水冷散热效果更佳。

2.1 显存

显存颗粒是显存的物理存储组成单元,主要用于存储图形数据和帧缓冲数据。显存颗粒的性能和容量直接影响显卡的整体性能,尤其是在高分辨率和高画质设置下。

2.1.1 显存类型

常见显存颗粒类型和品牌

  • GDDR5:速度快,功耗适中,性价比高,曾是主流显存类型。主要品牌有三星(Samsung)、海力士(Hynix)、美光(Micron)。

  • GDDR5X:GDDR5的升级版,具有更高的频率和带宽。主要由美光(Micron)生产。

  • GDDR6:最新一代GDDR显存,广泛应用于高端显卡,提供更高的频率和带宽,当前主流的显存类型。主要品牌有三星(Samsung)、海力士(Hynix)、美光(Micron)。

  • GDDR6X:GDDR6的升级版,提供更高的性能,主要用于高端显卡,主要由美光(Micron)生产。

  • HBM:高带宽、低功耗,主要用于高端显卡和专业计算。主要品牌有SK海力士(SK Hynix)、三星(Samsung)。

2.1.2 显存容量

显存容量指的是显卡上安装的显存芯片的总容量,通常以GB(千兆字节)为单位。显存容量越大,显卡能存储更多的图形数据,有助于处理高分辨率和复杂的图形任务。

  • 常见容量有2GB、4GB、6GB、8GB、12GB、16GB及以上。

  • 适用场景

    • 2GB/4GB:适合一般办公和普通游戏。 

    • 6GB/8GB:适合中高端游戏和图形处理。

    • 12GB及以上:适合专业图形设计、视频编辑和高端游戏。

2.1.3 显存位宽

显存位宽指的是显存与显卡GPU之间单次传输的数据量,以bit(位)为单位。位宽越大,显卡的数据传输速度越快,整体性能越好。

常见位宽有64bit、128bit、192bit、256bit、384bit、512bit。

位宽越大,显存带宽(即数据传输速率)越高,对显卡性能提升明显。

2.1.4 显存频率

显存频率指的是显存工作每秒传输的周期数,通常以MHz(兆赫兹)或GHz(千兆赫兹)为单位。显存频率越高,显存的数据传输速度越快。频率越高,处理速度越快。

常见频率有1500MHz、2000MHz、3000MHz、4000MHz及以上。

2.1.5 显存带宽

带宽是显存和GPU之间的数据传输速度,带宽越高,数据传输效率越高。而显存的总带宽是由频率、位宽、显存类型共同决定的。一般游戏画面分辨率越高,贴图和模型越精致,对显存容量和带宽的要求越高。

图片

在显存够用的情况下,显卡的性能还是由显卡核心的GPU来决定。

2.2 图形处理器GPU

GPU芯片主要厂商

  • 英伟达(NVIDIA):GPU市场的领军企业,广泛应用于游戏、专业图形、数据中心和AI计算领域。主要产品系列包括GeForce系列(面向游戏和消费市场)、NVIDIA RTX A系列(面向专业图形工作站)和NVIDIA A系列(面向数据中心和科学计算)。

  • 超威(AMD):主要产品系列包括Radeon(面向游戏和消费市场)、Radeon Pro(面向专业图形工作站)、Radeon Instinct系列(面向数据中心和科学计算)。

  • 英特尔(Intel):近年来也开始进入独立显卡市场,主要产品系列包括Intel Iris Xe(用于笔记本电脑和轻薄设备的集成和低功耗独立显卡)和Intel Arc系列(覆盖游戏和专业应用的高性能独立显卡)。

  • 摩尔线程(Moore Threads):成立于2020年,一家中国的GPU芯片设计公司,专注于研发高性能图形处理器和计算芯片,主要面向消费级和专业市场。主要产品系列包括:MThreads系列

  • 寒武纪:一家中国领先的AI芯片设计公司,专注于开发高性能AI处理器和加速卡,提供适用于边缘计算和数据中心的高性能AI芯片。

  • 华为海思:华为旗下的芯片设计公司,不仅在移动设备SoC中集成了强大的GPU,还开发了专门用于AI训练和推理的Ascend系列芯片,覆盖从消费级到企业级和专业市场。

GPU结构

GPU是由成千上万个微小的晶体管组成的集成电路。台积电(TSMC) 是全球领先的半导体制造公司,专门为其他公司提供芯片代工服务,它有世界上最先进的半导体制造工艺,包括7nm、5nm和即将量产的3nm工艺。全球众多知名半导体公司设计GPU的架构和逻辑电路,然后由台积电利用先进的制造工艺将设计转化为实际的芯片。

图片

  • 流式处理器:占大部分面积,负责几乎所有图像运算,显卡流处理器越多,频率越高,性能越强。

  • 视频解码器:它把0101的二进制数据转换成连续播放的视频画面。如果解码器性能过弱,就可能在播放视频时出现卡顿掉帧问题;

  • 视频编码器:它可以把视频数据以新的编码方式压缩成期望格式和大小。如果编码器过弱,则会在剪辑视频导出时浪费过多的时间;

  • 显存控制器:让GPU和显卡得以顺利交互数据;

  • PCIe控制器:让显卡能和主板上的CPU、内存硬盘等其他元器件交互数据。

CPU与GPU比对:

  • CPU核心像经验丰富的数学家,能处理更多复杂的任务。

  • GPU核心更像小学生,适合做简单的并行计算。

3. 显卡品牌

图片

显卡品牌众多,不同品牌和系列的显卡在性能、散热、价格等方面各有优势。

4. 桌面显卡性能天梯图

图片

### YOLOv8 的主要特性和使用教程 #### 一、YOLOv8的主要特性 YOLOv8 是目标检测领域的一个重要进展,具有多个显著特点: - **轻量级跨尺度特征融合(CCFM)**:通过引入 CCFM 模块实现了更有效的多尺度特征提取和融合,提升了模型性能的同时保持了较低的计算成本[^3]。 - **改进的数据增强方式**:采用更加多样化且高效的数据增广手段来提高泛化能力,在不同场景下均能取得良好效果[^4]。 - **优化后的骨干网络设计**:相较于前代版本,YOLOv8 对其基础架构进行了调整与优化,使得整体效率更高,速度更快[^1]。 - **支持多种任务类型**:除了常规的目标分类外,还能够处理实例分割等复杂视觉识别挑战。 #### 二、YOLOv8 使用教程 ##### 安装依赖库并准备环境 为了顺利地安装和运行 YOLOv8 ,建议先创建一个新的 Python 虚拟环境,并按照官方文档中的指导完成必要的软件包安装工作。通常情况下这会涉及到 PyTorch 及其他辅助工具链的选择与配置。 ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install ultralytics ``` ##### 准备数据集 准备好用于训练或测试目的图像资料集合非常重要;这些素材应该被妥善整理成标准格式以便于后续操作。对于自定义项目而言,则需参照特定框架的要求来进行相应预处理步骤。 ##### 编写配置文件 编写合适的 `.yaml` 文件以指定各项超参数设定以及输入源信息等内容。此过程可能涉及但不限于设置锚框尺寸、类别数目以及其他影响最终输出质量的关键因素。 ```yaml train: ./datasets/train/images/ val: ./datasets/valid/images/ nc: 80 names: ['person', 'bicycle', ... ] ``` ##### 启动训练进程 当一切准备工作就绪之后就可以调用命令行接口执行实际的学习任务了。这里需要注意的是具体选项可能会依据个人需求有所差异,请务必仔细阅读相关说明材料后再做决定。 ```python from ultralytics import YOLO model = YOLO('yolov8.yaml') results = model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` ##### 进行预测评估 最后一步则是利用已经训练好的权重文件对未知样本实施推断作业,并据此作出合理的判断结论。同样可以通过简单的 API 接口轻松达成这一目标。 ```python predictions = model.predict(source="https://ultralytics.com/images/bus.jpg", conf=0.5) print(predictions) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值