import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
import tensorflow as tf
from tensorflow.keras import Sequential, utils, layers
import warnings
warnings.filterwarnings('ignore')
dataset = pd.read_csv(r"deepneuralnetwork-main\dataset\volume-005es18017-I-2015.csv")
dataset['stamp'] = pd.to_datetime(dataset['stamp'], format="%Y-%m-%d %H:%M:%S")
dataset.index = dataset.stamp
dataset.drop(columns=['stamp'], axis=1, inplace=True)
# 归一化
scaler = MinMaxScaler()
dataset['18017'] = scaler.fit_transform(dataset['18017'].values.reshape(-1, 1))
dataset['18017'].plot()
plt.show()
# 特征工程
def creat_new_dataset(dataset, seq_len=12):
x = [] # 数据集
y = [] # 标签
start = 0
end = dataset.shape[0] - seq_len
for i in range(start, end):
sample = dataset[i:i + seq_len
使用lstm交通流预测
最新推荐文章于 2024-10-30 15:14:21 发布