使用lstm交通流预测

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
import tensorflow as tf
from tensorflow.keras import Sequential, utils, layers
import warnings

warnings.filterwarnings('ignore')
dataset = pd.read_csv(r"deepneuralnetwork-main\dataset\volume-005es18017-I-2015.csv")

dataset['stamp'] = pd.to_datetime(dataset['stamp'], format="%Y-%m-%d %H:%M:%S")

dataset.index = dataset.stamp
dataset.drop(columns=['stamp'], axis=1, inplace=True)

# 归一化
scaler = MinMaxScaler()
dataset['18017'] = scaler.fit_transform(dataset['18017'].values.reshape(-1, 1))


dataset['18017'].plot()
plt.show()

# 特征工程
def creat_new_dataset(dataset, seq_len=12):
    x = []  # 数据集
    y = []  # 标签
    start = 0
    end = dataset.shape[0] - seq_len
    for i in range(start, end):
        sample = dataset[i:i + seq_len
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

名字很敷衍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值