非端到端学习
在传统的机器学习中,其学习流程通常由多个过程化化模块构成,这些模块各自负责相对独立的任务,但是其任务执行的结果往往会影响下一个模块的效果,最终影响到整个训练的效果,这种机器学习模型是非端到端的。在典型的自然语言处理问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,先导步骤的效果往往会影响接下来的步骤结果;在传统语音识别系统中,包括特征提取模块、声学模型、发音词典、语言模型、解码器等模块,传统的语音识别中的语音模型和语言模型是分别训练的,单个模型的优化不一定能提高总体上的识别率。
端到端学习
而端到端学习的思路是直接通过深度学习模型,在输入端输入数据,从输出端得到预测结果,与真实结果比较得到误差,将误差在模型中逐层反向传播并进行调整,直到模型收敛或达到预期效果结束训练。
链接:https://www.zhihu.com/question/50454339/answer/257372299
来源:知乎
著作权归原作者所有