在最近的论文阅读中,又一次见到作者提到 “端到端”(End-to-end) 这个概念,但是在专业课的学习和以往查的资料中,这个名词并没有被特意地强调过。
端到端,是相对于 非端到端 而言的。在机器学习最开始的时候,人们并不是直接输入原始数据,获得最终结果;而是首先通过特征提取,对原始数据进行初步的处理,然后再对于得到的特征进行学习,得出分类or回归的结果。比如使用一些hand-crafted functions作为特征描述符等等。
因此,在这种情况下(非端到端),特征的提取会对模型的最终表现有着巨大的影响。而特征描述符的书写又具有很大的经验成分,所以是一件比较困难的任务。
端到端的学习,就是把特征提取的任务也交给模型去做,直接输入原始数据或者经过些微预处理的数据,让模型自己进行特征提取。 这一种设计风格在神经网络,尤其是深层的神经网络出现后开始被广泛应用,无疑是得益于算力的提升。并且,神经网络可以很好地学习到特征的描述,之前需要人工设计的特征算子,本身也可以通过神经网络的方式,让模型自己习得,从而可以用于其他的任务以及更深的研究。
在图像领域,CNN就是一个很典型的端到端结构。输入图像,输出可以做分类,可以做补全,做各种任务。这之中的具体细节都不需要人工干预,这就是End-to-end。
具体场景下的例子
https://www.cnblogs.com/zeze/p/7798080.html
对于