一、原理及思想
首先将n个数据划分成n个有序子表,每个子表长度为1,。然后在两两归并,得到n/2个长度为2的有序子表。其次在两两归并,得到n/4个长度为4的有序子表。依次类推,直到得到一个长度为n的有序表为止。
二、求解方法
按照分治三步法,对归并算法介绍如下:
- 划分问题:把序列分成元素个数尽量相等的两半。
- 递归求解:把两半元素分别排序。
- 合并问题:把两个有序表合并成一个。
三、代码实现
//从小到大排序
void merge_sort(int* A, int x, int y, int* T){
//注意合并的区间[x,m),[m,y),不包括y,所以(y-x+1)-1 > 1
if(y-x > 1){
int m = x + (y-x)/2; //划分
int p = x, q = m, i = x;
merge_sort(A, x, m, T); //递归求解
merge_sort(A, m, y, T); //递归求解
//注意合并的区间[x,m),[m,y)
while(p < m || q < y){
//从左半数组复制到临时空间
if(q >= y || (p < m && A[p] <= A[q]))
T[i++] = A[p++];
//从右半数组复制到临时空间
else
T[i++] = A[q++];
}
//从辅助空间复制回A数组
for(i = x; i < y; i++)
A[i] = T[i];
}
}
四、算法分析
- 空间性能:需要与原表等量的辅助空间
- 时间性能:一趟排序时间复杂度O(n),又因总共需要趟归并,故时间复杂度为.