这是我在实习期间做的一篇人工智能CT腹部器官分割的神经网络算法介绍。该工作已经在MICCAI(医学影像人工智能顶级会议)workshop FLARE22竞赛中获得排名第五以及在讨论会中Oral口头汇报工作。
FLARE22比赛链接:https://flare22.grand-challenge.org/Home/
摘要
众所周知,腹部 CT 器官分割具有挑战性。 多个腹部器官的分割可以对不同器官进行定量分析,为计算机辅助诊断 (CAD) 系统提供宝贵的输入。 基于 nnUNet,我们开发了一种适用于腹部 CT 和全身 CT 数据的腹部器官分割方法。 拟议的新训练管道结合了 Kullback-Leibler 半监督学习和完全监督学习,并采用从粗到精的策略和 GPU 加速插值。 我们的方法在 FLARE 2022 验证/测试数据集上实现0.873/0.870 的平均骰子相似系数 (DSC) 和 0.911/0.915 的归一化表面骰子 (NSD),每个案例的平均处理时间为 12.27 秒。 总体而言,我们在 FLARE 2022 挑战赛中排名第五。 代码可在 https://github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource 获取。
关键字:FLARE 2022 · CT segmentation · Deep learning
一、引言
作为医学图像分析的基础学科,从医学图像中自动准确地分割腹部器官是计算机辅助诊断、手术导航、视觉增强、放射治疗和生物标志物测量系统的重要步骤[9]。 在最近的各种比赛中,nnUNet [4] 一直表现出色,但其内存消耗和 GPU 使用导致计算资源需求巨大,这给该方法的工业部署带来了很大困难。在本文中,我们提出了一种基于 nnUNet 的改进训练和推理方案,并加入了由粗到精的策略以减少计算资源。这项工作的主要贡献总结如下:
使用半监督学习算法训练模型,使用2000个未标记的CT样本通过模型的四个解码器计算伪标签。 伪标签用于计算 Kullback-Leibler (KL) 散度损失,真实标签用于计算交叉熵和骰子损失。
开发了基于 nnUNet 的从粗到细的策略。 与最初的 nnUNet 实现相比,它在几乎没有精度损失的情况下实现了显着的加速。
与将 CT 数据大小调整为固定大小的常见做法不同,使用滑动窗口方法 [4] 的粗模型来粗略定位全身 CT、半身 CT 和腹部 CT 中的腹部器官,随后使用细模型进行精细分割。
nnUNet 的插值算法经过优化并高度加速。 对于全身CT大样本插值,时间从90s缩短到1s,内存消耗小。
在此次介绍的工作有限,如果你对我的研究工作感兴趣,以下是论文以及代码。
论文:https://openreview.net/pdf?id=wuwiQtZaiTk
代码:https://github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource