sliding windows infer 模型

本文介绍了一种使用滑动窗口进行图像预测的方法,并详细解释了如何通过调整步长(stride)来确保预测区域的覆盖。这种方法适用于深度学习模型在大图像上的应用,通过对图像进行切片并进行密集预测,最后将预测结果合并成完整图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入一张大图和一个model,使用两个stride刚好密铺滑窗。

def do_overlap(data, model, stride=[96, 164], hp=224, wp=224):
    # h, w = 2336, 3504
    _,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值