1024. 科学计数法 (20)
时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
HOU, Qiming
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[+-][1-9]"."[0-9]+E[+-][0-9]+,即数字的整数部分只有1位,小数部分至少有1位,该数字及其指数部分的正负号即使对正数也必定明确给出。
现以科学计数法的格式给出实数A,请编写程序按普通数字表示法输出A,并保证所有有效位都被保留。
输入格式:
每个输入包含1个测试用例,即一个以科学计数法表示的实数A。该数字的存储长度不超过9999字节,且其指数的绝对值不超过9999。
输出格式:
对每个测试用例,在一行中按普通数字表示法输出A,并保证所有有效位都被保留,包括末尾的0。
输入样例1:+1.23400E-03输出样例1:
0.00123400输入样例2:
-1.2E+10输出样例2:
-12000000000
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s;
cin >> s;
if (s[0] == '-') //负数则输出负号
cout << "-";
int pos, after = 0, len = s.length();
for (int i = 1; i < len; i++) { //找出E的位置
if (s[i] == 'E')
pos = i;
}
for (int i = pos+2; i < len; i++) { //计算出E后数字的大小
after = (s[i] - '0') + 10 * after;
}
if(s[pos+1] == '-') { //E后为负号时
if (0 < after) {//且after为正数时 缩小数字
cout << "0.";
for (int i = 1; i < after; i++) {
cout << 0;
}
for (int i = 1; i < pos; i++) {
if (s[i] >= '0' && s[i] <= '9') {
cout << s[i];
}
}
} else { //after为0时,原样输出
for (int i = 1; i < pos; i++) {
if (i == 2 - after) {
cout << ".";
}
if (s[i] >= '0' && s[i] <= '9') {
cout << s[i];
}
}
}
}
else { //E后为正号时
if (pos - 3 < after) { //判断 扩大数字在后面加0
if (s[1] != '0')
cout << s[1];
for(int i = 3; i < pos; i++) {
if (s[i] >= '0' && s[i] <= '9') {
cout << s[i];
}
}
for (int i = 0; i < after - (pos - 3); i++) {
cout << 0;
}
} else { //判断 未扩大数字 将小数点后移
if(s[1] != '0')
cout << s[1];
for (int i = 3; i < pos; i++) {
if (i == 3 + after) {
cout << ".";
}
if (s[i] >= '0' && s[i] <= '9') {
cout << s[i];
}
}
}
}
return 0;
}