论文阅读笔记(2-2)---A Review Study for Electrocardiogram Signal Classification

论文阅读笔记(2-1)主要介绍ANN和CNN

A Review Study for Electrocardiogram Signal Classification

CLASSIFICATION

DWT

小波变换用于识别和诊断心电信号,广泛应用于信号处理。DWT的主要优势是很好的时间分辨率。它提供了良好的低频频率分辨率和高频分辨率。DWT能够揭示输入信号的局部特征,因为它具有很强的时间和频率局部化能力。

关于基于DWT的心电图分类,国内外已发表了大量的文献。下面是一些新的方法:

Desai等人(2015)描述了一种基于机器学习的方法,用于检测基于DWT特征的五类ECG心律失常。此外,ICA还被用来进行降维。采用方差分析方法选择显著特征,采用十倍交叉验证方法进行支持向量机。实验在MIT-BIH心律失常上进行,心律失常分为非异位(N)、室性异位(V)、室上异位(S)、融合(F)和未知(U)五类。使用SVM二次核分类ECG特征,总平均ACC为98.49%[60]。

Saraswat(2016)探索了使用DWT方法对Wolff-Parkinson-White综合征心电图信号进行分类的分解的各种可能性。本文采用四阶Daubechies小波(db4)对心电信号进行离散采样,直到分解树的第5分辨率,这有助于平滑特征,更适合检测信号的变化。一些实验结果使用了MIT-BIH数据库。

Alickovic和Subasi(2016)指出,与对ECG数据集使用十倍交叉验证的DT方法相比,RF分类器取得了更好的性能。结果表明,该分类系统可以进一步促进ACC分类词的发展。准确的心电信号分类是检测各种心律失常的主要要求。在两个不同的数据库上,即MIT-BIH数据库和圣彼得堡心脏病技术研究所12导联心律失常数据库,评估了该系统的性能。对于MIT-BIH数据库,RF分类器生成的总ACC分别为99.33%和98.44%和98.67%。对于圣彼得堡心脏技术研究所的12导联心律失常数据库,RF分类器得出C4.5和CART分类器的ACC为99.95%,而C4.5和CART分类器的ACC为99.80%。多尺度PCA去噪、DWT和RF分类器的合并模型对MIT-BIH数据库的ROC曲线下面积(曲线下面积[AUC])和F-measure分别为0.999和0.993以及1和0.999,对于和圣彼得堡心脏技术研究所的12导联心律失常数据库也取得了良好的性能。结果表明,该系统能够对心电信号进行可靠的分类,有助于临床医生对心血管疾病做出准确的诊断。

Pan et al.(2017)提出了一种基于随机森林技术和离散小波的心律失常综合诊断方法。具体来说,DWT用于去除高频噪声和基线漂移,而DWT、自autocorrelation、PCA、varience等数学方法用于提取频域特征、时域特征和形态学特征。同时,开发了心律失常分类系统,验证了该系统的有效性,对临床心律失常自动分类具有一定的指导和参考价值。

Sahoo(2017)提出了一种改进的基于小波变换的QRS波群特征提取算法,对四个子心电节拍进行分类:正常(N)、左束支传导阻滞(LBBB)、右束支传导阻滞(RBBB)和起搏节拍(P);使用神经网络和支持向量机分类器。从MIT-BIH心律失常数据库获得48个记录的心电图信号,根据敏感度、特异性和准确度评估模型性能。该方法在检测QRS波时,检测效率高,误检率低,为0.42%。该分类器在支持向量机和神经网络中的平均ACC分别为96.67%和98.39%,具有一定的优越性。SVM方法的分类结果表明,该方法在检测心律失常时优于提取参数的神经网络分类器。

Ceylan(2018)研究了一种基于稀疏表示和字典学习实现的信号备用系数的模型。将得到的系数用于三种不同分类方法的权值更新过程,这三种分类方法分别使用SVM、AdaBoost和LDA算法生成。第一步,提出基于字典学习(DL)的AdaBoost分类器对心电信号进行分离。然后,将所选特征应用于心电信号,通过DWT、T检验、Bhattacharyya、一阶统计量(FOS)、Wilcoxon检验和熵方法得到6个不同的特征子集,被用作新的数据集。根据该方法进行了分类,得到了满意的结果。对于使用DWT和Wilcoxon检验方法获得的属性子集,使用基于商业术语的方法DL-AdaBoost-SVM得到的最佳分类ACC为99.75%。

Tea和Vladan(2018)提出了一个新的框架,将压缩感知理论和随机森林相结合,以实现可靠的自动心律失常检测。此外,还评估了DCT、DWT和FFT数据变换的特征化能力,以提取显著的特征,从而提高分类性能。在MIT-BIH基准心律失常数据库上进行的实验结果表明,对于相对较少的随机投影系数,基于小波变换的特征比基于特征提取的方法具有更好的效果。此外,由于该模型复杂度较低,可用于实时心电监护的实际应用。

Zhang et al.(2019)提出了一种轻量级方法来分类五种类型的心律失常:即正常搏动(N)、室性早搏(PVC)(V)、心房早搏(APC)(a)、RBBB搏动(R)和LBBB搏动(L)。采用频率分析和Shannon熵相结合的方法提取合适的统计特征。利用信息增益准则进行特征选择。然后将所选特征输入到随机林、KNN和J48中进行分类。为了评估分类性能,我们使用了十倍交叉验证来验证我们的方法的有效性。实验结果表明,随机森林分类器性能显著,SPE为99.5%,最高SEN为98.1%,ACC为98.08%,优于其他有代表性的心律失常自动分类方法。

Kora等人(2019年)的研究表明,在ECG信号中检测心房颤动(AF)的算法已经开发出来。为正确检测房颤,应在检测房颤之前对心电信号进行预处理和特征提取。在对数据库中的心电信号进行预处理后,对心电信号进行去噪处理,得到干净的心电信号。经过预处理后,在特征提取之前,对信号进行R峰检测。由于R峰值具有最高振幅,因此,在第一轮中检测到它,并且随后执行ECG信号的其他峰值的定位。完成后,采用基于倒T波逻辑和ST段抬高的DWT进行预处理和特征提取。我们的分类算法被证明能够成功地获取、分析和解释房颤患者的心电图,表明其有可能支持房颤患者的m健康诊断、监测和治疗管理。

在这里插入图片描述

SVM

支持向量机是一种学习算法,具有许多优良的性质。。支持向量机使用线性判别函数进行分类;但是,如果使用非线性核,也可以进行非线性分类。支持向量机实时性好,鲁棒性强,易于理解。与其他分类器相比。分类任务通常需要有关要分类的数据的知识;因此,在对任何数据进行分类之前,必须对分类器进行训练。支持向量机分类器的一个主要优点是它能自动找到支持向量,以便更好地分类。在任何情况下,支持向量机的性能都取决于核函数选择。

基于支持向量机的心电信号分类已经有很多研究发表。以下是一些最近的研究:

Elhaj等人(2016)研究了线性和非线性特征的组合,以改进ECG数据的分类。本研究分析了美国医疗器械进步协会推荐的心律失常的五种类型:非异位搏动(N)、室上异位搏动(S)、室性异位搏动(V)、融合搏动(F)和不可分类和起搏搏动(U)。将高阶统计量、累积量等非线性特征的表征能力和ICA等非线性特征约简方法与线性特征相结合,即DWT系数的PCA。通过十次交叉验证,测试了这些特征对使用不同分类器(即SVM和NN方法)区分不同类别数据的能力。该方法采用支持向量机和径向基函数相结合的方法,可以对ACC高(98.91%)的N、S、V、F、U类心律失常进行分类。

Arjunan(2016)报告说,统计特征可用于分类ECG信号。像第一个一样,信号已经作为预处理从去噪过程中传递出来。然后,从信号中提取以下统计特征,例如均值、方差、标准差和偏度。利用支持向量机将心电信号分为正常和异常两类。结果表明,该系统对给定的心电信号进行了90%的SEN和SPE分类。

Smíšek et al.(2017)提出了将ECG自动分类为四类(正常心律[N]、AF[A]、其他心律[O]和噪声记录[P])的方法。支持向量机方法在模型的两个不同阶段进行了研究。第一阶段,利用支持向量机从整个心电信号中提取全局特征。在第二阶段,利用前一步的特征训练第二个SVM分类器。交叉验证技术被用来评估这两个分类器。结果表明,在第二阶段的挑战中,该方法在隐式挑战数据集和训练集中的F1总分分别为0.81和0.84。

Wu等人(2017)开发了一个识别过量饮酒的系统。三个传感器被用来获取有关心电图(ECG)、血压计和光容积描记器(PPG)的信号。研究人员用酒精分析仪了解参与者饮酒前后的饮酒水平。对信号进行预处理、分割,并使用特定算法进行特征提取,以产生ECG和PPG训练和测试数据。利用ECG、PPG和酒精消耗数据,建立的模型对SVM算法的辨识方案具有快速、准确的特点。利用训练数据和测试数据对训练后的支持向量机进行训练,提高了支持向量机的识别性能。该分类器的识别率平均达到95%。在该方法中,通过测试不同的特征组合来选择最佳的工艺配置。由于PPG特征和ECG特征具有相同的分类性能,且PPG特征更易于获取,因此基于PPG的技术设置更适合于开发智能可穿戴设备,用于识别受影响驾驶。

Venkatesan et al.(2018),ECG信号预处理和基于SVM的心律失常节拍分类被分为正常和异常受。在心电信号预处理中,采用延迟误差归一化LMS自适应滤波器,以较少的计算量实现高速低延迟设计。由于信号处理技术是为远程医疗系统而发展起来的,所以白噪声的去除是目前研究的重点。将小波变换应用于预处理信号进行心率变异性特征提取,利用机器学习技术进行心律失常节拍分类。本文将SVM分类器和其他流行的分类器应用于去噪特征提取信号的差拍分类。实验结果表明,支持向量机分类器的性能优于其他基于机器学习的分类器。

Liu等人(2019)提出了一种基于CNN的心电图心律失常分类算法。他们将CNN模型与线性判别分析(LDA)和支持向量机相结合进行了比较。所有心律失常都来自MIT-BIH心律失常数据库,根据美国医疗器械协会(AAMI)制定的标准将其分为五组。训练集和测试集来自不同的人,分类正确率>90%。

在这里插入图片描述

KNN

与类似的机器学习方法相比,KNN算法是一种简单的机器学习算法。大多数机器学习算法都是基于KNN算法。KNN分类器是一种基于实例的学习方法,它存储所有训练样本向量。这是一种非常简单有效的方法,特别是对于高维问题。它基于相似的训练样本对新的未知测试样本进行分类。相似性度量通常是欧几里德距离。K-NN分类器基于特征空间中最近训练点的分组,聚类结果集中到最近邻点。

基于KNN的心电图分类方法已经有很多种。以下是一些新作品:

Faziludeen和Sankaran(2016)提出了一种将心电图自动分类为两类的方法:正常和PVC。证据K近邻(EKNN)是基于Dempster-Shafer理论对心电信号进行分类的。采用RR间期特征。分析是在MIT-BIH数据库上进行的。将EKNN算法与传统的KNN算法进行了性能比较。使用不同大小的训练集评估训练数据大小的影响。结果表明,基于EKNN的分类系统性能优于基于KNN的分类系统。

Bouaziz et al.(2018)实现了基于KNN的自动心电心跳分类器。利用小波变换对心电信号进行了分割。所考虑的节拍类别为正常(N)、PVC、APC、RBBB和LBBB。利用MITBIH心律失常数据库的心电数据,验证了基于KNN的分类器的有效性。通过对几种病理性心搏的SPE和SEN的计算值,以及全局分类率(98,71%)的比较,取得了良好的分类效果。

Khatibi和Rabinezhadsadatmahaleh(2019)提出了一种基于深度学习和K-NNs的特征工程方法。提取的特征分别用DTs、不同核的SVM和随机森林等分类器进行分类。该方法具有良好的节拍分类性能,采用五次交叉验证策略,平均ACC为99.77%,AUC为99.99%,准确率为99.75%,召回率为99.30%。该方法的主要优点是与从头开始训练的深度学习模型相比,计算量小,与传统的机器学习模型相比,具有较高的ACC。SEN和SPE之间的高度平衡表明了该方法在特征提取方面的优势和适用性。

在这里插入图片描述

DISCUSSION

心电图分类是反映心脏状况和心血管状况的重要手段,对提高患者的生活质量至关重要。本文对心电信号分类的主要技术进行了综述。一般来说,心电图分类的任何结构都可以分为四个阶段。预处理是心电信号分类的关键步骤。基于这个原因,本文对大多数著名的技术进行了综述。采用预处理步骤和预处理技术相结合的思想是为了提高模型的性能。第二步是从心电信号中提取最相关的信息,它代表了心脏的状态。该步骤称为特征提取步骤。如何从心电信号的变化状态中提取出有效的信息进行鉴别是一个非常重要的挑战。模型的成功率可以评价特征是否包含有价值的信号知识。第三步称为特征选择步骤。模型的执行时间是一个关键部分,可以通过在特征空间中使用最优特征来减少执行时间。许多技术被用来降低特征的维数。有些方法是受自然启发的,有些则是基于数学规则的。主要的重点是选择一种机器学习算法对心电特征进行分类。为此,已经采用了许多方法。大多数的分类器方法都是由特征提供的,但是CNN是一种无特征的技术,所以CNN是由原始信号提供的。综述了ANN、CNN、DWT、KNN和SVM。所有的评论文章都是从三个可信的来源下载的,IEEE,ScienceDirect和Springer for 2015-2020。表1-5显示了所有综述文章的总结,包括使用了什么样的机器学习、这些方法对心电图分类的有效性以及使用了什么样的心电图数据集。ECG分类中的一些要点如下所示:

根据以往基于ANN算法的心跳分类工作,利用从正常和异常心电信号的高阶谱分析中提取的多光谱模式和特征对ANN进行训练。采用人工神经网络作为分类器,帮助知识管理和决策系统提高分类精度,结果表明,采用主成分分析的人工神经网络对心电信号进行分类时,误分类率最低。CEEMDAN和ANN的性能都优于所有现有的和以前的算法(表1)。([评审员1、2和3])

CNN是一种直截了当的应用,因为CNN是一种功能较少的技术。因此,研究人员并不关心CNN模型中不需要的任何手工特征。采用了一维和二维的CNN,根据观测结果,一维CNN的性能优于二维CNN。此外,就计算步骤而言,一维CNN比二维CNN复杂。CNN还可以与MENN集成,以改进ACC分类(表2)。(CNN在ECG分类中的作用[Reviewer 1 and 2 and 3])。

对每一个心跳信号进行小波变换,得到其形态特征。它提供了更好的时间和频率分辨率的心电图信号。DWT是心电图分类的有力工具,是直接的植入工具。DWT是帮助临床医生准确诊断CVD的重要手段。在总结DWT相关研究成果的基础上,将DWT模型与随机森林相结合,可以达到99.77%的ACC(表3)(DWT的主要注释[Reviewer 1和2和3])。

支持向量机(SVM)广泛应用于模式识别。支持向量机模型采用加权核函数方法对输入心电信号中的Q波、R波和S波进行有效识别,实现对心跳信号的分类。支持向量机也是心电信号分类的有力工具,但CNN的分类性能优于支持向量机。此外,支持向量机的实现时间消耗比KNN模型高,比CNN模型小。SVM-RBF分类器利用简单的统计特征对95%的心电信号进行了正确分类。(SVM的贡献[Reviewer 1 and 2 and 3])。

由于KNN算法不需要训练阶段,应用KNN算法可以获得最低的心律失常诊断率。手工特征的作用是KNN模型的一个重要课题,因为KNN模型是基于距离的,所以只要获得的特征的维数较低。时域和频域特征被应用于心电图分类的KNN分类器,这比其他机器学习方法更简单(表5)。(kNN在ECG分类中的主要作用[Reviewer 1 and 2 and 3])。

CONCLUSION

心电信号的分类对识别正常和异常心跳起着重要的作用。提高ECG分类的ACC是一个具有挑战性的问题。十多年来,它一直很感兴趣;为此,开发了许多方法。本文从方法、数据集、贡献率、成功率等方面综述了近年来的研究进展。表(CNN)总结了ECG信号分析中的方差方法。我们建议使用一种基于CNN的长、短期记忆(LSTM)混合模型。CNN部分可以从原始信号中提取特征,这些特征可以是基于卷积层数的时间特征,LSTM可以学习时间特征中的模式,因为LSTM更适合时间序列特征。然后,该模型可以预测未知的心电信号。我们将调整CNN模型中的过滤器和LSTM模型中的层,以提高分类率。(解释如何使用CNN+LSTM[Reviewer 3])

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值