数据结构与算法学习笔记2

复杂度分析

一、时间复杂度分析

1、举例说明
例1

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

T(n) = (2n+2)unit_time

例2

 int cal(int n) {
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum = sum +  i * j;
     }
   }
 }

T(n) = (2 n 2 n^2 n2+2 n n n+3)unit_time

总结:所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
在这里插入图片描述
T ( n ) T(n) T(n) 表示执行代码的时间;
n n n表示数据规模的大小;
f ( n ) f(n) f(n)表示每行代码执行的次数总和;
④ 公式中的O,表示代码的执行时间 T ( n ) T(n) T(n) f ( n ) f(n) f(n)表达式成正比。

大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

n n n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O( n n n); T(n) = O( n 2 n^2 n2)

2、分析策略

只关注循环执行次数最多的一段代码


 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

时间复杂度: O( n n n

加法法则:总复杂度等于量级最大的那段代码的复杂度


int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

时间复杂度: O( n 2 n^2 n2)

乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积


int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

时间复杂度: O( n 2 n^2 n2)

3、几种常见时间复杂度实例分析

多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2 n ^n n) 和 O( n n n!)
在这里插入图片描述
我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题

4、几种常见的多项式时间复杂度

① O(1)


 int i = 8;
 int j = 6;
 int sum = i + j;

它的时间复杂度也是 O(1),而不是 O(3)。只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

② O(logn)、O(nlogn)


 i=1;
 while (i <= n)  {
   i = i * 2;
 }

O(log2n)


 i=1;
 while (i <= n)  {
   i = i * 3;
 }

O(log3n)

不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)

③ O(m+n)、O(m*n)


int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)

二、空间复杂度分析

空间复杂度: 表示算法的存储空间与数据规模之间的增长关系


void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

O( n n n)

三、总结

常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ru-willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值