复杂度分析
一、时间复杂度分析
1、举例说明
例1
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
T(n) = (2n+2)unit_time
例2
int cal(int n) {
int sum = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum = sum + i * j;
}
}
}
T(n) = (2 n 2 n^2 n2+2 n n n+3)unit_time
总结:所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
①
T
(
n
)
T(n)
T(n) 表示执行代码的时间;
②
n
n
n表示数据规模的大小;
③
f
(
n
)
f(n)
f(n)表示每行代码执行的次数总和;
④ 公式中的O,表示代码的执行时间
T
(
n
)
T(n)
T(n)与
f
(
n
)
f(n)
f(n)表达式成正比。
大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度
当 n n n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O( n n n); T(n) = O( n 2 n^2 n2)
2、分析策略
① 只关注循环执行次数最多的一段代码
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
时间复杂度: O( n n n)
② 加法法则:总复杂度等于量级最大的那段代码的复杂度
int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
return sum_1 + sum_2 + sum_3;
}
时间复杂度: O( n 2 n^2 n2)
③ 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
int cal(int n) {
int ret = 0;
int i = 1;
for (; i < n; ++i) {
ret = ret + f(i);
}
}
int f(int n) {
int sum = 0;
int i = 1;
for (; i < n; ++i) {
sum = sum + i;
}
return sum;
}
时间复杂度: O( n 2 n^2 n2)
3、几种常见时间复杂度实例分析
多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2
n
^n
n) 和 O(
n
n
n!)
我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。
4、几种常见的多项式时间复杂度
① O(1)
int i = 8;
int j = 6;
int sum = i + j;
它的时间复杂度也是 O(1),而不是 O(3)。只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
② O(logn)、O(nlogn)
i=1;
while (i <= n) {
i = i * 2;
}
O(log2n)
i=1;
while (i <= n) {
i = i * 3;
}
O(log3n)
不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)
③ O(m+n)、O(m*n)
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。
二、空间复杂度分析
空间复杂度: 表示算法的存储空间与数据规模之间的增长关系
void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}
O( n n n)
三、总结
常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )