论文阅读笔记:Remote Sensing Image Change Detection With Transformers

该博客介绍了使用Transformers进行遥感图像变化检测的研究。通过CNN提取双时态图像特征,级联后输入TransformerEncoder,再经TransformerDecoder生成变化特征图,最终通过卷积神经网络产生变化地图。该方法旨在识别复杂场景中的变化并排除无关变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读笔记:Remote Sensing Image Change Detection With Transformers

论文题目: Remote Sensing Image Change Detection With Transformers
论文链接:https://ieeexplore.ieee.org/document/9491802
代码链接:https://github.com/justchenhao/BIT_CD
引用方式:

@Article{chen2021a,
    title={Remote Sensing Image Change Detection with Transformers},
    author={Hao Chen, Zipeng Qi and Zhenwei Shi},
    year={2021},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    volume={},
    number={},
    pages={1-14},
    doi={}
}

一、背景

1、名词介绍

\quad\quad ① CD: change detection,变化检测
\quad\quad ② BIT: a bitemporal image transformer,双时的图像Transformer
\quad\quad ③ RF: receptive field,感受野
\quad\quad ④ BERT: bidirectional encoder representations from transformer,双向编码表示Transformer

2、高分辨率(HR)卫星数据和航空数据的提供为在精细尺度上监测土地覆盖和土地利用开辟了新的途径。

3、变化检测框架目前有:

\quad\quad ① 一阶段: 直接将两个不同时间的图像进行融合,生成一个变化map。
\quad\quad ② 两阶段: 首先对两个不同时间的图像分别进行分类,然后再将分类结果进行对比。

二、动机

1、场景中物体的复杂性
2、不同的成像条件:这使得具有相同语义信息的物体在不同的时间和不同的空间位置上(时空)表现出不同的光谱特性。具体如下图所示:
在这里插入图片描述

三、方法

  1. 识别场景中兴趣变化的高级语义信息
  2. 从复杂的无关变化中区分真正的变化

具体的设计如下所示:

  • 首先通过CNN分别提取两个时间图像的特征,
  • 然后将两者级联(沿着特征空间分别进行融合)输入到Transformer Encoder中,
  • 编码之后,再将两者的特征split输入到Transformer Decoder中,分别生成各自的特征图,
  • 然后将其进行相减找到变化的部分,
  • 最后经过几层卷积神经网络生成change map。
    在这里插入图片描述

注:所有的内容仅供自己学习使用,如果任何问题,欢迎批评指正~
\quad 存在任何侵权问题,请私信于我~

### 遥感图像变化检测方法和技术 遥感图像的变化检测技术主要关注于识别和量化不同时期获取的两幅或多幅影像之间的差异。这种方法广泛应用于土地覆盖监测、城市扩展分析、灾害评估等领域。以下是几种常见的遥感图像变化检测技术和方法: #### 1. 基于像素的方法 基于像素的变化检测方法是最简单也是最常用的技术之一。它通过对同一位置上的多时相影像进行逐像素比较来实现变化检测。通常采用差分法或比率法计算前后两次影像间的差异[^2]。 ```python import numpy as np def pixel_based_change_detection(image_t1, image_t2): """ 实现简单的基于像素的变化检测算法。 参数: image_t1 (numpy.ndarray): 时间t1的遥感图像数据。 image_t2 (numpy.ndarray): 时间t2的遥感图像数据。 返回: change_map (numpy.ndarray): 变化图谱,标记发生变化的位置。 """ difference = abs(np.array(image_t1).astype(float) - np.array(image_t2).astype(float)) threshold = np.mean(difference) * 0.5 # 设置阈值 change_map = (difference > threshold).astype(int) return change_map ``` 此方法的优点在于其实现简便且易于理解,但它可能受到噪声的影响较大,尤其是在高分辨率影像中[^4]。 #### 2. 特征提取与机器学习模型 为了提高变化检测的准确性,可以利用更复杂的特征表示形式并结合机器学习模型来进行分类。例如,迭代分类器组合模型(Iterative Classifiers Combination Model)被用于改进卫星图像场景分类的效果[^1]。此外,深度学习框架也被引入到这一领域,特别是卷积神经网络(CNNs),它们能够自动从原始数据中提取高层次语义特征[^3]。 #### 3. 图像配准的重要性 在执行任何类型的变化检测之前,确保两张待比较图片已经过精确的空间校正至关重要。这一步骤被称为图像配准,它是将来自不同源或者时刻捕获的数据集对齐的过程[^5]。如果未正确完成,则可能导致虚假变化信号出现从而影响最终结果质量。 --- ### 结论 综上所述,针对遥感图像中的改变探测存在多种策略可供选择,具体取决于应用场景需求以及可用资源条件等因素决定最适合方案是什么样的。无论是基础统计运算还是高级AI驱动解决方案都可以有效服务于这个目标只要适当配置参数设置即可获得良好表现效果。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ru-willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值