前言
最后编辑时间为2024-06-13,阅读本文前请注意最后编辑时间,文章内容可能与目前最新的技术发展情况相去甚远。欢迎各位评论与私信,指出错误或是进行交流等。
根据工业机器视觉系统开发过程(参考工业机器视觉(一)该文章),对于任务进行需求分析后,要进行软硬件选型。
由于是计算机专业的,对于硬件方面并不专业。因此,本文主要参考他人文章,重点关注图像采集部分,为后续的软件部分打下基础,并列出一些关键的内容。
光源
光源的作用主要有:
1)照亮目标,提高亮度;
2)形成有利于图像处理的成像效果,降低视觉检测系统的复杂度及对 图像处理算法的难度;
3)克服环境光的干扰,保证图像稳定性;
4)用作测量的工具或参照物。
良好的光场设计要求
- 对比度明显,目标与背景的边界清晰
- 背景尽量淡化而且均匀,不干扰图像处理
- 与颜色有关的还需要颜色真实,亮度适中,不过曝或欠曝
没有一款万能的光源,只有合适的才是最好的。因此,需要:
1)了解项目需求,明确要检测或者测量的目标,并且测试样品要丰富,要有不同种类的完好样品及问题样品,尽可能的让样品出现所有的问题,特别是要有最难检测实际有问题的样品。
2)分析目标与背景的区别,找出两者之间最可能差异大的光学现象,确定工业相机、光源、被测物的空间结构关系;
3)根据光源与目标之间的配合关系,初步确定合适的光源发光类型;
4)要多款备用测试光源,LED光源常见的几大类,以及不同的颜色都要有。拿实际光源测试,以确定满足要求的打光方式;
5)根据具体,确定适用于客户的产品。
具体硬件选型和相关知识查看以下文章:
https://blog.csdn.net/weixin_51554164/article/details/125746746
https://blog.csdn.net/weixin_42258743/article/details/107380953
https://blog.csdn.net/together_1/article/details/123094071
https://blog.csdn.net/qq_61703240/article/details/136188143
https://blog.csdn.net/yishuihanq/article/details/107094673
https://blog.csdn.net/VOMMA/article/details/139272526
相机
具体硬件选型和相关知识查看以下文章:
https://blog.csdn.net/together_1/article/details/123094071
https://blog.csdn.net/qq_61703240/article/details/136188143
https://blog.csdn.net/Vichael_Chan/article/details/98093950
https://handsome-man.blog.csdn.net/article/details/115560970
https://blog.csdn.net/2301_76660661/article/details/131719647
https://blog.csdn.net/yishuihanq/article/details/107178971
https://blog.csdn.net/VOMMA/article/details/139272526
镜头
具体硬件选型和相关知识查看以下文章:
https://blog.csdn.net/weixin_51554164/article/details/125722680
https://blog.csdn.net/weixin_42258743/article/details/107378389
https://blog.csdn.net/together_1/article/details/123094071
https://blog.csdn.net/qq_61703240/article/details/136188143
https://handsome-man.blog.csdn.net/article/details/115560970
https://blog.csdn.net/yishuihanq/article/details/107179121
https://blog.csdn.net/VOMMA/article/details/139272526
采集卡
具体硬件选型和相关知识查看以下文章:
https://blog.csdn.net/VOMMA/article/details/134963288
https://blog.csdn.net/weixin_51554164/article/details/124320774
https://blog.csdn.net/weixin_51554164/article/details/124608967
https://blog.csdn.net/qq_43359864/article/details/137794239
https://blog.csdn.net/qq_43359864/article/details/123372444
https://blog.csdn.net/image900/article/details/116232626
其余硬件
传感器、显示设备、PLC、执行机构、连线、电源等需要结合实际应用场景
机器视觉软件或算法库
机器视觉软件和算法库主要用于实现和优化机器视觉功能。
OpenCV
OpenCV是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、计算机视觉和机器学习应用开发。OpenCV用C++语言编写,它的主要接口也是C++语言。该库也有大量的Python, Java and MATLAB/OCTAVE的接口,如今也提供对于C#, Ruby的支持。
优点:
- 开源免费: Opencv是一个开源的计算机视觉库,对于预算有限的项目和个人开发者来说,这是一个巨大的优势。
- 社区支持: 有一个庞大的用户社区,提供了大量的文档、教程和代码示例,帮助新手快速上手和解决问题。
- 跨平台: 支持Windows、Linux和MacOS等多种操作系统,使得在不同平台上的迁移和部署变得容易。
- 丰富的功能: 提供了丰富的算法和功能,包括图像处理、特征提取、目标跟踪等,几乎涵盖了计算机视觉的所有基础领域。
缺点:
- 性能问题: 在某些情况下,Opencv的性能可能不如专业的商业软件,尤其是在处理大规模数据或者实时应用时。
- 算法库的局限性: 对于一些高级的视觉任务,Opencv可能没有现成的解决方案,需要用户自己开发或者寻找第三方库。
适用场景:
- Opencv适合于教育、研究和原型开发,以及那些需要快速开发和部署计算机视觉应用的场合。
HALCON
HALCON是一款由德国MVTec公司开发的机器视觉软件包,包含一套完善的标准的机器视觉算法,应用范围广。它是一套image processing library,由一千多个各自独立的函数,以及底层的数据管理核心构成。其中包含了各类滤波,色彩以及几何,数学转换,型态学计算分析,校正,分类辨识,形状搜寻等等基本的几何以及影像计算功能。整个函数库可以用C,C++,C#,Visual basic和Delphi等多种普通编程语言访问。Halcon为大量的图像获取设备提供接口,保证了硬件的独立性。
优点:
- 高性能: Halcon是为工业级应用设计的,它的算法优化得非常好,适合处理大量数据和实时应用。
- 丰富的算法库: 提供了广泛的图像处理和分析功能,包括3D视觉、深度学习、形状匹配等。
- 易于集成: Halcon提供了易于使用的API和支持多种编程语言的接口,可以方便地集成到各种工业自动化系统中。
缺点:
- 成本: Halcon是一款昂贵的商业软件,可能不适合预算有限的项目。
- 学习曲线: 对于初学者来说,Halcon的学习曲线比较陡峭,需要投入较多的时间来掌握其复杂的功能。
适用场景:
- Halcon适用于对性能要求极高的工业视觉系统,如自动化检测、质量控制、机器人引导等。
VisionPro
美国康耐视公司开发的机器视觉软件,VisionPro提供多种开发工具拖放式界面、简单指令码和编程方式等,全面支持所有模式的开发。用户利用VisionPro QuickBuild™可以无需编程配置读取、选择并优化视觉工具,决定产品是否合格。用户也可以利用C++、C#、VB及.NET开发管理应用程序。Vision Pro提供的.NET程序接口允许用户采用面向对象的高级语言编程访问所有工具,以高效开发客户的专用视觉方案。
优点:
- 用户友好的界面: VisionPro拥有直观的图形用户界面,可以通过拖放的方式快速设计视觉应用。
- 强大的工具集: 提供了一系列强大的视觉工具,如图像增强、目标定位、缺陷检测等。
- 良好的硬件支持: VisionPro支持广泛的工业相机和视觉硬件,使得系统集成相对容易。
缺点:
- 成本: 与Halcon相似,VisionPro也是一款商业软件,价格不菲。
- 定制性: 尽管VisionPro很强大,但对于需要高度定制的视觉应用,可能需要额外的开发工作
适用场景:
- VisionPro适合于需要快速部署的工业视觉检测系统,尤其是在使用Cognex相机或者其他支持的硬件时。
VisionMaster
VisionMaster算法开发平台是海康机器人自主开发的机器视觉软件,致力于为客户提供快速搭建视觉应用、解决视觉检测难题的算法工具, 能满足视觉定位、尺寸测量、缺陷检测以及信息识别等机器视觉应用。
优点:
- 定制性强: VisionMaster提供了灵活的软件框架和开发工具,允许开发者根据需求进行高度定制。
- 成本效益: 相对于其他商业软件,VisionMaster可能提供更具竞争力的定价,适合中小企业。
- 技术支持: 通常提供良好的技术支持服务,帮助用户解决开发和部署过程中的问题。
缺点:
- 知名度和普及度: VisionMaster可能没有像Opencv、Halcon和VisionPro那样广泛的用户基础和社区支持。
- 资源和文档: 相较于其他成熟的软件,VisionMaster可能在资源和文档方面稍显不足。
适用场景:
- VisionMaster适用于需要定制化解决方案的机器视觉应用,尤其是在预算相对有限的情况下。
Labview
LabView是一种程序开发环境,由美国国 家仪器(NI)公司研制开发,使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。LabView软件是NI设计平台的核心,也是开发测量或控制系统的理想选择。LabView开发环境集成了工程师和科学家快速构建各种应用所需的所有工具,旨在帮助工程师和科学家解决问题、提高生产力和不断创新。
其他除以上罗列的5种外还有其他机器视觉软件开发平台和算法库,如感兴趣,请自行查阅资料
参考文章:
https://blog.csdn.net/qq_38998213/article/details/132323093
https://blog.csdn.net/moonlightpeng/article/details/97622652
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/chenai886/article/details/135065871