Densenet可视化中间层的特征

@[Densenet]

1 建立一个全局变量,将特征图放在其中
feature_map = []

2 构建hook函数
def forward_hook(module, fea_in, fea_out):

3 取出densenet中具体block的具体层
def register_hook():

4 读取图片
img = Image.open("…/dataset/images/img.png")

5 将图片送进网络

6 中间层特征可在feature_map中取出

完整代码如下:

"""
DenseNet, original: https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
"""
import re
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import torchvision.transforms as transforms

from PIL import Image
import numpy as np



model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}


class _DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
                                           kernel_size=1, stride=1, bias=False))
        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False))
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)

class _DenseBlock(nn.Sequential):
    """DenseBlock"""
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,
                                drop_rate)
            self.add_module("denselayer%d" % (i+1,), layer)


class _Transition(nn.Sequential):
    """Transition layer between two adjacent DenseBlock"""
    def __init__(self, num_input_feature, num_output_features):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(num_input_feature))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(2, stride=2))


class DenseNet(nn.Module):
    "DenseNet-BC model"
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
                 bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
        """
        :param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper
        :param block_config: (list of 4 ints) number of layers in each DenseBlock
        :param num_init_features: (int) number of filters in the first Conv2d
        :param bn_size: (int) the factor using in the bottleneck layer
        :param compression_rate: (float) the compression rate used in Transition Layer
        :param drop_rate: (float) the drop rate after each DenseLayer
        :param num_classes: (int) number of classes for classification
        """
        super(DenseNet, self).__init__()
        # first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
        ]))

        # DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features += num_layers*growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features*compression_rate))
                self.features.add_module("transition%d" % (i + 1), transition)
                num_features = int(num_features * compression_rate)

        # final bn+ReLU
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))

        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)

        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out

class DenseNet_MNIST(nn.Module):
    """DenseNet for MNIST dataset"""
    def __init__(self, growth_rate=12, block_config=(6, 6, 6), num_init_features=16,
                 bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=10):
        """
        :param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper
        :param block_config: (list of 2 ints) number of layers in each DenseBlock
        :param num_init_features: (int) number of filters in the first Conv2d
        :param bn_size: (int) the factor using in the bottleneck layer
        :param compression_rate: (float) the compression rate used in Transition Layer
        :param drop_rate: (float) the drop rate after each DenseLayer
        :param num_classes: (int) number of classes for classification
        """
        super(DenseNet_MNIST, self).__init__()
        # first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(1, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
        ]))

        # DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features += num_layers * growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features * compression_rate))
                self.features.add_module("transition%d" % (i + 1), transition)
                num_features = int(num_features * compression_rate)

        # final bn+ReLU
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))

        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)

        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out


def densenet121(pretrained=False, **kwargs):
    """DenseNet121"""
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
                     **kwargs)

    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model


# 建立一个全局变量,将特征图放在其中
feature_map = []

# 构建hook函数
def forward_hook(module, fea_in, fea_out):
    feature_map.append(fea_out)

def register_hook():
    densenet = densenet121(pretrained=True).eval()
    features = list(densenet.children())[0]
    block_config = [1, 2, 3, 4]
    layer_config = [6, 12, 24, 16]
    for layer, block in zip(block_config, layer_config):
        denselayer = features.get_submodule("denseblock" + str(layer)).get_submodule("denselayer" + str(block))
        denselayer.register_forward_hook(forward_hook)
    return densenet

if __name__ == "__main__":
    densenet = register_hook()


    img = Image.open("../dataset/images/img.png")
    trans_ops = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    images = trans_ops(img).view(-1, 3, 224, 224)

    score = densenet(images)
    print(feature_map[1].shape)

    # 特征输出可视化
    import matplotlib.pyplot as plt
    #
    for i in range(6):
        ax = plt.subplot(8, 8, i + 1)
        ax.set_title('Sample #{}'.format(i))
        ax.axis('off')
        plt.imshow(feature_map[1].data.numpy()[0, i, :, :], cmap='jet')
        plt.show()

取出的 feature_map[1].shape为 (1,512,28,28)(batch,C, H,W),最后for
循环是从512个通道中取出前6个通道的特征可视化为28*28大小。

最后,博客写的少,也不专业、不规范,仅作学习记录。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
PyTorch是一个非常强大的深度学习框架,可以用于构建、训练和部署神经网络模型。虽然PyTorch默认情况下不提供直接可视化中间层的功能,但我们可以通过一些方法实现可视化中间层的结果。 一种常用的方法是使用钩子(hook)函数。钩子函数可以注入到网络中的某个层或模块中,以在该层或模块进行前向传递时捕获并保存中间层的输出结果。这样,我们就可以在训练过程中或之后检查这些输出结果并进行可视化。 以下是使用钩子函数实现可视化中间层的简单示例代码: ```python import torch from torchvision import models # 加载预训练的模型(示例使用ResNet50) model = models.resnet50(pretrained=True) # 定义钩子函数 def hook_fn(module, input, output): # 在此处对中间层的输出结果进行处理和可视化 print(output.shape) # 示例中仅打印中间层输出的形状 # 注册钩子函数到指定层(示例中为最后一个卷积层) model.layer4.register_forward_hook(hook_fn) # 输入示例数据进行前向传递 input_data = torch.rand(1, 3, 224, 224) output = model(input_data) # 输出应包含一个形状信息,表示钩子函数正确捕获和处理了中间层的输出结果 ``` 在上述示例代码中,我们利用钩子函数将中间层的输出结果打印出来。根据具体需求,我们可以在钩子函数中进行各种图像处理、特征可视化以及特征图展示等操作。 此外,还有其他一些PyTorch可视化工具包,如`torchsummary`和`torchviz`,可以帮助我们更方便地可视化中间层结果。这些工具可以进一步扩展我们对网络中间层输出的可视化能力。 综上所述,通过使用钩子函数和相关的可视化工具包,我们可以在PyTorch中实现可视化中间层的结果,帮助我们更好地理解和调试神经网络模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值