李群李代数(一)

1 基础

三维旋转构成了特殊正交群   S O ( 3 ) \ SO(3)  SO(3),三维刚体变换构成了特殊欧氏群   S E ( 3 ) \ SE(3)  SE(3),如下所示:
S O ( 3 ) = { R ∈ R 3 ∗ 3 ∣ R R T = I , d e t ( R ) = 1 } S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 ∗ 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } SO(3) = \left\{ R \in \mathbb{R}^{3*3} | RR^T=I, det(R)=1 \right\}\\ SE(3) = \left\{ T = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} \in \mathbb{R}^{4*4} | R \in SO(3), t \in \mathbb{R}^3 \right\} SO(3)={RR33RRT=I,det(R)=1}SE(3)={T=[R0Tt1]R44RSO(3),tR3}

1.1 李群

群是一种几何加上一种运算的代数结构,集合A,运算   ⊗ \ \otimes  ,那么群可以记作   G = ( A , ⊗ ) \ G=(A, \otimes)  G=(A,),同时满足"封结幺逆"四则性质。
∀ a 1 , a 2 ∈ A , a 1 ⊗ a 2 ∈ A ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ⊗ a 2 ) ⊗ a 3 = a 1 ⊗ ( a 2 ⊗ a 3 ) ∃ a 0 ∈ A , s . t . ∀ a ∈ A , a 0 ⊗ a = a ⊗ a 0 = a ∀ a ∈ A , ∃ a − 1 ∈ A , s . t . a ⊗ a − 1 = a 0 \forall a_1,a_2 \in A, a_1 \otimes a_2 \in A \\ \forall a_1,a_2,a_3 \in A, (a_1 \otimes a_2) \otimes a_3 = a_1 \otimes (a_2 \otimes a_3) \\ \exist a_0 \in A, s.t. \forall a\in A, a_0 \otimes a = a \otimes a_0 = a \\ \forall a \in A, \exist a^{-1}\in A, s.t. a \otimes a^{-1} = a_0 a1,a2A,a1a2Aa1,a2,a3A,(a1a2)a3=a1(a2a3)a0A,s.t.∀aA,a0a=aa0=aaA,a1A,s.t.aa1=a0
李群是指具有连续光滑性质的群,像整数集合   Z \ \mathbb{Z}  Z这样离散群就没有连续性质,所以不是李群。

1.2 李代数来源

李代数的引出,推导如下:
R ( t ) R ( t ) T = I R ( t ) ˙ R ( t ) T + R ( t ) R ( t ) T ˙ = 0 R ( t ) ˙ R ( t ) T = − ( R ( t ) R ( t ) T ˙ ) = − ( R ( t ) ˙ R ( t ) T ) T R(t)R(t)^T=I \\ \dot{R(t)}R(t)^T + R(t)\dot{R(t)^{T}} = 0 \\ \dot{R(t)}R(t)^T = -(R(t)\dot{R(t)^{T}}) = -(\dot{R(t)}R(t)^{T})^T \\ R(t)R(t)T=IR(t)˙R(t)T+R(t)R(t)T˙=0R(t)˙R(t)T=(R(t)R(t)T˙)=(R(t)˙R(t)T)T
由反对称矩阵的性质可得:
R ( t ) ˙ R ( t ) T = ϕ ( t ) ∧ R ( t ) ˙ = ϕ ( t ) ∧ R ( t ) \dot{R(t)}R(t)^T = \phi(t)^{\land} \\ \dot{R(t)} = \phi(t)^{\land} R(t) R(t)˙R(t)T=ϕ(t)R(t)˙=ϕ(t)R(t)
对旋转矩阵进行一阶泰勒展开得:
R ( t ) = R ( t 0 ) + R ( t 0 ) ˙ ( t − t 0 ) R(t) = R(t_0) + \dot{R(t_0)}(t-t_0) \\ R(t)=R(t0)+R(t0)˙(tt0)
设初始时刻没有发生旋转,即旋转矩阵为单位矩阵,同时可见   ϕ \ \phi  ϕ 对于R的导数性质,故称它在李群原点附近的正切空间上:
R ( t ) = I + ϕ ( t ) ∧ I ∗ ( t − 0 ) = I + ϕ ( t ) ∧ ∗ t R(t) = I + \phi(t)^{\land} I * (t-0) \\ = I + \phi(t)^{\land} * t R(t)=I+ϕ(t)I(t0)=I+ϕ(t)t
假设   ϕ ( t 0 ) = ϕ 0 \ \phi(t_0)=\phi_0  ϕ(t0)=ϕ0,有:
R ( t ) ˙ = ϕ 0 ∧ R ( t ) R ( 0 ) = I \dot{R(t)}=\phi_0^{\land} R(t) \\ R(0) = I R(t)˙=ϕ0R(t)R(0)=I
根据一阶线性微分方程求解,可解微分方程得到:
y ˙ + P ( x ) y = Q ( x ) y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] R ( t ) = e ϕ 0 ∧ t \dot{y} + P(x)y=Q(x) \\ y = e^{-\int{P(x)dx}}[\int{Q(x)e^{\int{P(x)dx}}dx} + C] \\ R(t) = e^{\phi_0^{\land} t} y˙+P(x)y=Q(x)y=eP(x)dx[Q(x)eP(x)dxdx+C]R(t)=eϕ0t

1.3 李代数

每个李群都有与之对应的李代数,李代数描述了李群的局部性质,即单位元附近的正切空间。李代数由一个集合   V \ \mathbb{V}  V、一个数域   F \ \mathbb{F}  F和一个二元运算符   [ , ] \ [,]  [,],统称   g ( V , F , [ , ] ) \ g(\mathbb{V}, \mathbb{F},[,])  g(V,F,[,]),且满足以下性质:
∀ X , Y ∈ V , [ X , Y ] ∈ V ∀ X , Y , Z ∈ V , a , b ∈ F , [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] ∀ X ∈ V , [ X , X ] = 0 ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = 0 \forall X,Y \in \mathbb{V}, [X, Y] \in \mathbb{V} \\ \forall X,Y,Z \in \mathbb{V}, a,b \in \mathbb{F}, [aX+bY,Z]=a[X,Z]+b[Y,Z], [Z, aX+bY]=a[Z,X]+b[Z,Y] \\ \forall X \in \mathbb{V}, [X,X]=0\\ \forall X,Y,Z \in \mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0 X,YV,[X,Y]VX,Y,ZV,a,bF,[aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y]XV,[X,X]=0X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0
其中的二元运算称为李括号。三维向量   R 3 \ \mathbb{R}^3  R3上定义的叉积   ∧ \ ^{\land}  就是一种李括号,因此   g = ( R 3 , R , ∧ ) \ g=(\mathbb{R}^3, \mathbb{R}, ^{\land})  g=(R3,R,)构成了一种李代数。

对李代数   s o ( 3 ) \ so(3)  so(3)而言,定义如下:
s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 ∗ 3 } Φ = ϕ ∧ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ∈ R 3 ∗ 3 so(3) = \left\{ \phi \in \mathbb{R}^{3}, \Phi = \phi^{\land} \in \mathbb{R}^{3*3} \right\} \\ \Phi = \phi^{\land} = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} \in \mathbb{R}^{3*3} so(3)={ϕR3,Φ=ϕR33}Φ=ϕ= 0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10 R33

两个向量的李括号计算为:
[ ϕ 1 , ϕ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ [\phi_1, \phi_2] = (\Phi_1\Phi_2-\Phi_2\Phi_1)^{\lor} [ϕ1,ϕ2]=(Φ1Φ2Φ2Φ1)
对于李代数   s e ( 3 ) \ se(3)  se(3)而言,定义如下:
s e ( 3 ) = { ϵ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ϵ ∧ = [ ϕ ∧ ρ 0 T 0 ] ∈ R 4 ∗ 4 } se(3)= \left\{ \epsilon=\begin{bmatrix} \rho \\ \phi \end{bmatrix} \in \mathbb{R}^{6}, \rho \in \mathbb{R}^{3}, \phi \in so(3), \epsilon^{\land} = \begin{bmatrix} \phi^{\land} & \rho \\ 0^T & 0 \end{bmatrix} \in \mathbb{R}^{4*4} \right\} se(3)={ϵ=[ρϕ]R6,ρR3,ϕso(3),ϵ=[ϕ0Tρ0]R44}
对应的李括号与   s o ( 3 ) \ so(3)  so(3)相似,
[ ϵ 1 , ϵ 2 ] = ( ϵ 1 ∧ ϵ 2 ∧ − ϵ 2 ∧ ϵ 1 ∧ ) ∨ [\epsilon_1, \epsilon_2] = (\epsilon_1^{\land}\epsilon_2^{\land}-\epsilon_2^{\land}\epsilon_1^{\land})^{\lor} [ϵ1,ϵ2]=(ϵ1ϵ2ϵ2ϵ1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值