论文名字 | Fast-adapting and Privacy-preserving Federated Recommender System |
来源 | 未发表 |
年份 | 2021.4.9 |
作者 | Qinyong Wang, Hongzhi Yin, T ong Chen, Junliang Yu, Alexander Zhou, Xiangliang Zhang |
核心点 | 提出一种在联邦学习框架下的推荐系统,并使用差分隐私来做隐私保护。 |
阅读日期 | 2021.5.16 |
影响因子 |
|
页数 | 15 |
引用数 |
|
引用 |
|
内容总结 | |
文章主要解决的问题及解决方案: 问题:在推荐系统中,使用传统的集中式机器学习训练不可避免地存在用户数据泄漏问题。 解决方法:使用联邦学习框架,使得用户不用上传原始数据;使用差分隐私防护联邦学习中恶意参与者;使用元学习解决数据异构问题。
文章相比之前的工作创新之处: 1、联邦学习中数据异构问题 解决方法:meta learning 元学习 2、联邦学习中恶意参与者问题(只针对进行原始数据反推的恶意参与者) 解决方法:差分隐私
文章的主要工作: 1、揭示使用联邦学习的推荐系统中,存在数据异构问题带来的影响:①与其他非活跃用户相比,频繁用户与item的交互记录要多得多。所以,直接最小化所有用户的平均损失将主要有利于活跃用户的推荐性能,而不活跃用户的偏好很难估计。②现有的基于FL的推荐范例仅被设计成让所有设备贡献给一个全局模型,因此最终模型仅在平均推荐准确度上是好的。因为它们没有考虑到用户之间的数据分布的异构性,所以不能保证全局模型是为每个用户完全定制的,这阻碍了个性化推荐的交付。 并提出解决这个问题的方法,即使用元学习。 同时,文中指出传统元学习的模型MAML的几个缺点:①其需要求二阶导,这需要大量计算量②其需要将本地数据划分为支持集和查询集用于两阶段训练,这对于交互记录数量非常有限的用户来说是不切实际的。 因此,在本文中,元学习只使用近似的一阶梯度(即REPTILE[33]),从而减少计算负担,同时保持相当的性能。此外,在文中的方法中不需要数据分割,这使得该模型更适合活动和非活动用户,并且更容易在FL环境中运行。此外,我们在局部学习目标函数中添加了一个近似项,有效地限制了单个客户端 2、引入一个可学习的梯度裁切边界的DP算法,以在模型优化过程中自适应地调整每个用户的重要性。动态调整DP,主要是相邻batch灵敏度S的动态调整: 其中, 详细要看文章的2.3.2和2.3.3 3、DP的隐私预算用RDP算。 4、性能指标两个:①Hits;②NDCG
文章内容:
实验结果:
附录:
参考文献:
|