论文阅读:Fast-adapting and Privacy-preserving Federated Recommender System

该论文提出了一个结合联邦学习和差分隐私的推荐系统,旨在解决用户数据隐私和数据异构性问题。通过使用元学习方法,它解决了联邦学习中非活跃用户的数据不足问题,同时采用动态的差分隐私策略来抵御恶意参与者。实验表明,这种方法在保护用户隐私的同时,也提高了推荐系统的性能。
摘要由CSDN通过智能技术生成

论文名字

Fast-adapting and Privacy-preserving Federated Recommender System

来源

未发表

年份

2021.4.9

作者

Qinyong Wang, Hongzhi Yin, T ong Chen, Junliang Yu, Alexander Zhou, Xiangliang Zhang

核心点

提出一种在联邦学习框架下的推荐系统,并使用差分隐私来做隐私保护。

阅读日期

2021.5.16

影响因子

 

页数

15

引用数

 

引用

 

内容总结

文章主要解决的问题及解决方案:

问题:在推荐系统中,使用传统的集中式机器学习训练不可避免地存在用户数据泄漏问题。

解决方法:使用联邦学习框架,使得用户不用上传原始数据;使用差分隐私防护联邦学习中恶意参与者;使用元学习解决数据异构问题。

 

文章相比之前的工作创新之处:

1、联邦学习中数据异构问题

解决方法:meta learning 元学习

2、联邦学习中恶意参与者问题(只针对进行原始数据反推的恶意参与者)

解决方法:差分隐私

 

文章的主要工作:

1、揭示使用联邦学习的推荐系统中,存在数据异构问题带来的影响:①与其他非活跃用户相比,频繁用户与item的交互记录要多得多。所以,直接最小化所有用户的平均损失将主要有利于活跃用户的推荐性能,而不活跃用户的偏好很难估计。②现有的基于FL的推荐范例仅被设计成让所有设备贡献给一个全局模型,因此最终模型仅在平均推荐准确度上是好的。因为它们没有考虑到用户之间的数据分布的异构性,所以不能保证全局模型是为每个用户完全定制的,这阻碍了个性化推荐的交付。

并提出解决这个问题的方法,即使用元学习。

同时,文中指出传统元学习的模型MAML的几个缺点:①其需要求二阶导,这需要大量计算量②其需要将本地数据划分为支持集和查询集用于两阶段训练,这对于交互记录数量非常有限的用户来说是不切实际的。

因此,在本文中,元学习只使用近似的一阶梯度(即REPTILE[33]),从而减少计算负担,同时保持相当的性能。此外,在文中的方法中不需要数据分割,这使得该模型更适合活动和非活动用户,并且更容易在FL环境中运行。此外,我们在局部学习目标函数中添加了一个近似项,有效地限制了单个客户端

2、引入一个可学习的梯度裁切边界的DP算法,以在模型优化过程中自适应地调整每个用户的重要性。动态调整DP,主要是相邻batch灵敏度S的动态调整:

其中,是batch中样本的分数,其值最多为先前界限S,是学习率,对于系数,最优S是用户更新的范数(norm)的第γ个分位数。

详细要看文章的2.3.2和2.3.3

3、DP的隐私预算用RDP算。

4、性能指标两个:①Hits;②NDCG

 

文章内容:

 

 

实验结果:

 

 

附录:

 

 

参考文献:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三金samkam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值