Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges
https://arxiv.org/abs/2401.08664
这篇论文探讨了大型语言模型(LLMs)在教育领域的应用,包括它们的基础能力、潜力以及面临的挑战。以下是对论文内容的总结:
-
基础能力:论文首先概述了LLMs在教育中的关键能力,如数学问题解决、写作、编程、推理和基于知识的问答等。这些能力是构建下一代智能教育系统的基础。
-
教育系统的发展:介绍了基于LLM的教育系统的发展现状,包括统一方法和专家混合(MoE)方法。统一方法侧重于训练一个能够处理多学科问题的全面语言模型,而MoE方法则利用一个LLM控制器与多个专家模型协作,处理特定领域的任务。
-
挑战:尽管LLMs在多个领域展现出潜力,但在教育应用中仍面临一些挑战,包括:
- 学生个性化学习路径规划的复杂性。
- 跨学科问题解决能力的集成。
- 学生行为和需求建模的准确性。
- LLMs可能存在的社会偏见及其在教育内容中的潜在影响。
- 预防教育中作弊行为的机制。
- 多模态教育内容的处理,如结合文本和图像的问题。