【论文精读系列】之《Turbulence-Induced 2D Correlated Image Distortion》其三

论文地址:《Turbulence-Induced 2D Correlated Image Distortion》

5 Creating a Distortion Field(创建失真场)

在这一节中,我们推导了一个创建随机失真场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) 的方法,其自相关与公式(32,33)给出的 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 一致。这里的一些表达式是标量值域的简单教科书关系的矩阵值推广。
z ( p ) {\boldsymbol z}({\boldsymbol p}) z(p) 为白噪声向量场,其中每个元素为2×1矢量, E [ z ( p ) z T ( p + v ) ] = I δ ( v ) E[{\boldsymbol z}({\boldsymbol p}){\boldsymbol z}^T({\boldsymbol p}+{\boldsymbol v})]={\boldsymbol I}\delta({\boldsymbol v}) E[z(p)zT(p+v)]=Iδ(v) 。具有自相关函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 的随机向量场可以通过 z ( p ) {\boldsymbol z}({\boldsymbol p}) z(p) 与确定性矩阵值核 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) 的卷积得到: e ( p ) = ∫ K ( p − p ′ ) z ( p ′ ) d p ′ (34) {\boldsymbol e}({\boldsymbol p})=\int{\boldsymbol K}({\boldsymbol p}-{\boldsymbol p'}){\boldsymbol z}({\boldsymbol p'})d{\boldsymbol p'} \tag{34} e(p)=K(pp)z(p)dp(34) 其中 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) 是一个矩阵值域:每个向量 p {\boldsymbol p} p 有一个2×2的矩阵 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) 。目标是找到一个核 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) ,使得域 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) 具有公式(32,33)给出的理想的自相关函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v)
2×2矩阵值自相关函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 与2×2矩阵值卷积核 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) 有关,通过: C ( v ) = ∫ K ( p ) K T ( p + v ) d p (35) {\boldsymbol C}({\boldsymbol v})=\int{\boldsymbol K}({\boldsymbol p}){\boldsymbol K}^T({\boldsymbol p}+{\boldsymbol v})d{\boldsymbol p} \tag{35} C(v)=K(p)KT(p+v)dp(35) 根据公式(35)求 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) 是一个反卷积问题。这种反卷积可以在Fourier域中求解。设 ω {\boldsymbol \omega} ω 为二维空间频率矢量。从(34)中,向量场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) 的空间傅里叶变换是向量场: e ~ ( ω ) = ∫ e ( p ) e − j ω T p d p = K ~ ( ω ) z ~ ( ω ) (36) \tilde{\boldsymbol e}({\boldsymbol \omega})=\int{\boldsymbol e}({\boldsymbol p})e^{-j{\boldsymbol \omega}^T{\boldsymbol p}}d{\boldsymbol p}=\tilde{\boldsymbol K}({\boldsymbol \omega})\tilde{\boldsymbol z}({\boldsymbol \omega}) \tag{36} e~(ω)=e(p)ejωTpdp=K~(ω)z~(ω)(36) 另一方面, C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 的空间Fourier变换是矩阵值谱密度函数: C ~ ( ω ) = ∫ C ( v ) e − j ω T v d v = E [ e ~ ∗ ( ω ) e ~ T ( ω ) ] (37) \tilde{\boldsymbol C}({\boldsymbol \omega})=\int{\boldsymbol C}({\boldsymbol v})e^{-j{\boldsymbol \omega}^T{\boldsymbol v}}d{\boldsymbol v}=E[\tilde{\boldsymbol e}^*({\boldsymbol \omega})\tilde{\boldsymbol e}^T({\boldsymbol \omega})] \tag{37} C~(ω)=C(v)ejωTvdv=E[e~(ω)e~T(ω)](37) 其中 ∗ * 表示复共轭。每个 ω {\boldsymbol \omega} ω 有一个2×2矩阵 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω) 。将公式(36)代入公式(37): C ~ ( ω ) = E [ K ~ ∗ ( ω ) z ~ ∗ ( ω ) z ~ T ( ω ) K ~ T ( ω ) ] = K ~ ∗ ( ω ) E [ z ~ ∗ ( ω ) z ~ T ( ω ) ] K ~ T ( ω ) = K ~ ∗ ( ω ) K ~ T ( ω ) (38) \tilde{\boldsymbol C}({\boldsymbol \omega})=E[\tilde{\boldsymbol K}^*({\boldsymbol \omega})\tilde{\boldsymbol z}^*({\boldsymbol \omega})\tilde{\boldsymbol z}^T({\boldsymbol \omega})\tilde{\boldsymbol K}^T({\boldsymbol \omega})]=\tilde{\boldsymbol K}^*({\boldsymbol \omega})E[\tilde{\boldsymbol z}^*({\boldsymbol \omega})\tilde{\boldsymbol z}^T({\boldsymbol \omega})]\tilde{\boldsymbol K}^T({\boldsymbol \omega})=\tilde{\boldsymbol K}^*({\boldsymbol \omega})\tilde{\boldsymbol K}^T({\boldsymbol \omega}) \tag{38} C~(ω)=E[K~(ω)z~(ω)z~T(ω)K~T(ω)]=K~(ω)E[z~(ω)z~T(ω)]K~T(ω)=K~(ω)K~T(ω)(38) 公式(38)使用了这样一个事实,即任何白噪声场的谱密度为 E [ z ~ ∗ ( ω ) z ~ T ( ω ) ] = I E[\tilde{\boldsymbol z}^*({\boldsymbol \omega})\tilde{\boldsymbol z}^T({\boldsymbol \omega})]={\boldsymbol I} E[z~(ω)z~T(ω)]=I ∀ ω \forall {\boldsymbol \omega} ω 。因此,公式(38)是(35)的空间傅里叶变换。
自相关函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 是实对称矩阵,其自变量 v {\boldsymbol v} v 的符号变化是对称的,它的对角项是正定函数。结果表明,它的Fourier变换 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω) 也是实对称的矩阵,它的参数 ω {\boldsymbol \omega} ω 的符号变化是对称的,对角项是正函数。尽管满足公式(38)的2×2矩阵 K ~ \tilde{\boldsymbol K} K~ 有很多,选择 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω) 的对称平方根是很自然的,它具有相同的性质。给定 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω) ,其矩阵平方根可按公式(39)计算每一个 ω {\boldsymbol \omega} ω K ~ ( ω ) = 1 t ( ω ) [ C ~ ( ω ) + s ( ω ) I ] (39) \tilde{\boldsymbol K}({\boldsymbol \omega})=\frac{1}{t(\boldsymbol \omega)}[\tilde{\boldsymbol C}({\boldsymbol \omega})+s(\boldsymbol \omega){\boldsymbol I}] \tag{39} K~(ω)=t(ω)1[C~(ω)+s(ω)I](39) 其中 s ( ω ) = d e t C ~ ( ω ) s(\boldsymbol \omega)=\sqrt{det\tilde{\boldsymbol C}({\boldsymbol \omega})} s(ω)=detC~(ω) t ( ω ) = t r C ~ ( ω ) + 2 s ( ω ) t(\boldsymbol \omega)=\sqrt{tr\tilde{\boldsymbol C}({\boldsymbol \omega})+2s(\boldsymbol \omega)} t(ω)=trC~(ω)+2s(ω) 。例如,图8绘制了2×2矩阵 K ~ ( ω ) \tilde{\boldsymbol K}({\boldsymbol \omega}) K~(ω) 的每个元素,作为 ω {\boldsymbol \omega} ω 的函数,与图6和7中所示的函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 相对应。

(图8:2×2的矩阵值 K ~ ( ω ) \tilde{\boldsymbol K}({\boldsymbol \omega}) K~(ω) 对应于图6和7所示的函数 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) 。如第6章所述,使用FFT计算得出。此处的图是低频域的10倍放大图。右上方的比例尺对应于 K ~ x y {\tilde K}_{xy} K~xy K ~ y x {\tilde K}_{yx} K~yx 。右下比例尺对应于 K ~ x x {\tilde K}_{xx} K~xx K ~ y y {\tilde K}_{yy} K~yy

为了产生互谱密度为 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω) 的随机场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) ,实际上不需要求 K ( p ) {\boldsymbol K}({\boldsymbol p}) K(p) ,即 K ~ ( ω ) \tilde{\boldsymbol K}({\boldsymbol \omega}) K~(ω) 的傅里叶逆变换。在Fourier域进行滤波就足够了。因此,理论方法是:
① 使用公式(32,33)计算 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v)
② 将 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v) Fourier变换至 C ~ ( ω ) \tilde{\boldsymbol C}({\boldsymbol \omega}) C~(ω)
③ 使用公式(39)计算过滤器 K ~ ( ω ) \tilde{\boldsymbol K}({\boldsymbol \omega}) K~(ω)
④ 采样随机高斯白噪声场 z ( p ) {\boldsymbol z}({\boldsymbol p}) z(p)
⑤ 将 z ( p ) {\boldsymbol z}({\boldsymbol p}) z(p) Fourier变换至 z ~ ( ω ) \tilde{\boldsymbol z}({\boldsymbol \omega}) z~(ω)
⑥ 使用 K ~ ( ω ) \tilde{\boldsymbol K}({\boldsymbol \omega}) K~(ω) 对每个 ω {\boldsymbol \omega} ω 的做简单乘法,如公式(36)所示,得到 e ~ ( ω ) \tilde{\boldsymbol e}({\boldsymbol \omega}) e~(ω)
⑦ 对 e ~ ( ω ) \tilde{\boldsymbol e}({\boldsymbol \omega}) e~(ω) 做Fourier逆变换,得到方差为1的失真场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p)
⑧ 放大 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) 使其方差与公式(1)一致。
例如,图9绘制了由该方法创建的失真场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) ,与图6,7,8中所示的自相关函数和核函数相对应。为了清晰度,在图9的80×80像素的子域上进行放大。

(图9:从图6和7所示的自相关函数得到的随机失真矢量场 e ( p ) {\boldsymbol e}({\boldsymbol p}) e(p) 的一部分。这是模拟的湍流引起的失真。为了清楚起见,此图放大了图像的80×80像素子域)

6 Practical Considerations(实际考虑)

实际上,计算机不执行连续傅里叶变换,而是执行离散的快速傅里叶变换(FFT)。这有几个含义。在正方形网格中,对空间位置和频率进行采样。如以上步骤2、5中那样使用FFT,可诱导相对于被采样的连续域Fourier变换的乘法尺度。该因素被补偿:在步骤7中,该区域被放大以具有单位方差。
此外,FFT是循环的:输入端的元素会影响另一端。这种环绕会导致函数在空间上衰减不够快的问题。如图4所示, b ⊥ b_{\perp} b 的衰变可能非常缓慢。尽管在边缘有非常低的值,环绕问题在Fourier域中产生负振荡,使得假定的正谱密度无效。这可以通过扩展空间域来减轻,但计算成本较高。在实践中,我们使用一个横跨 v {\boldsymbol v} v 域的Blackman窗口来羽化 C ( v ) {\boldsymbol C}({\boldsymbol v}) C(v)

7 Using the Distortion Field(使用失真场)

无湍流干扰的源图像是 g r a w ( p ) g_{raw}({\boldsymbol p}) graw(p) ,其中 p {\boldsymbol p} p 在规则网格上校正。由于湍流,任何像素位置 p {\boldsymbol p} p 都将移动到 p + e ( p ) {\boldsymbol p}+{\boldsymbol e}({\boldsymbol p}) p+e(p) ,从而在非均匀网格上创建一组值: g n o n u n i f o r m ( p + e ( p ) ) = g r a w ( p ) (40) g_{nonuniform}({\boldsymbol p}+{\boldsymbol e}({\boldsymbol p}))=g_{raw}({\boldsymbol p}) \tag{40} gnonuniform(p+e(p))=graw(p)(40) 最终失真的图像 g d i s t o r t e d ( p ) g_{distorted}(\boldsymbol p) gdistorted(p) 通过将 g n o n u n i f o r m ( p + e ( p ) ) g_{nonuniform}({\boldsymbol p}+{\boldsymbol e}({\boldsymbol p})) gnonuniform(p+e(p)) 插值到统一像素网格来生成。例如,图10(上)表示未失真的视图 g r a w ( p ) g_{raw}({\boldsymbol p}) graw(p) 。由于图10(上)是彩色的,因此我们首先针对 λ = 450 , 550 , 650 n m \lambda= 450,550,650nm λ=450,550,650nm 计算 γ ( q ) \gamma(q) γ(q) 。实际上,我们看到 γ ( q ) \gamma(q) γ(q) 在可见光下对 λ \lambda λ 不敏感,因此单个随机失真场适用于所有颜色通道。基于绘制图6,7,8,9的示例参数,我们生成了一个如图10所示的失真图像 g d i s t o r t e d ( p ) g_{distorted}(\boldsymbol p) gdistorted(p)

(图10:上图为原始1024×1024图像,没有随机失真。下图为进行与湍流一致的失真后的图像。失真场的一部分在图9中示出。该失真是从图9和10所示的自相关函数导出的)

我们显示其它示例。它们使用大多数如4.3节中详细说明的示例中一致的参数值。被改动的参数在表1中详述。相应地,结果显示于图11和12中。具体地,在图11中,焦距和目标距离分别变为 f = 380 m m f=380mm f=380mm L = 1.3 k m L=1.3km L=1.3km 。以像素为单位的失真方差几乎相同,但是相关范围加倍。因此,失真具有更低的空间频率,但幅度相似。然后在第4步中,在新的随机白噪声场 z ( p ) {\boldsymbol z}({\boldsymbol p}) z(p) 上运行该过程。

(图11:上图为原始1024×1024图像 g r a w ( p ) g_{raw}({\boldsymbol p}) graw(p) ,无随机失真。下图 g d i s t o r t e d ( p ) g_{distorted}(\boldsymbol p) gdistorted(p) 为经过与湍流一致的失真后的图像。参数在第4.3节和表1中描述。与图10相比,这里的失真场的二维空间相关性大约是像素范围的两倍。因此,湍流失真场在这里更平滑)

(图12:上图原始图片为1024×1024图像 g r a w ( p ) g_{raw}({\boldsymbol p}) graw(p) 。下图 g d i s t o r t e d ( p ) g_{distorted}(\boldsymbol p) gdistorted(p) 为经过与湍流一致的失真后的图像。参数在第4.3节和表1中描述)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值