TransE
《Translating Embeddings for Modeling Multi-relational Data》
任务
- 在低维向量空间中,将多种关系的图谱中的实体和关系在一个低维空间中进行表示,获得每个实体的表征结果。
- 提出一种易于训练的规范模型,该模型包含数量较少的参数,并且可以扩展到非常大的知识库。
- 对知识图谱中的多元关系数据进行建模,在不引入额外知识的情况下,高效的实现知识补全,关系预测。
方法(模型)
TransE:基于能量的模型,用于学习实体的低维嵌入。
-
关系作为向量空间转变的桥梁:如果三元组
(h,l,t)
成立,则头实体embedding和关系embedding相加约等于尾实体的embedding。h + l ≈ t h+l ≈ t h+l≈t
-
利用空间传递不变形,找到一个实体和向量空间,使得整关系三元组之间的势能差值最小。
m i n ( t − ( h + l ) ) min(t − ( h + l )) min(t−(h+l))
-
模型
-
给定一个训练集 S ,三元组表示为 ( h , l , t ) ( h , l , t ) (h,l,t),其中 h , t ∈ E , l ∈ L h , t ∈ E ,l ∈ L h,t∈E,l∈L ,实体和关系的嵌入维度设为 k,希望 h + l h + l h+l 与