【代码实现】Translating Embeddings for Modeling Multi-relational Data

TransE

《Translating Embeddings for Modeling Multi-relational Data》

任务

  • 在低维向量空间中,将多种关系的图谱中的实体和关系在一个低维空间中进行表示,获得每个实体的表征结果。
  • 提出一种易于训练的规范模型,该模型包含数量较少的参数,并且可以扩展到非常大的知识库。
  • 对知识图谱中的多元关系数据进行建模,在不引入额外知识的情况下,高效的实现知识补全,关系预测。

方法(模型)

TransE:基于能量的模型,用于学习实体的低维嵌入。

  1. 关系作为向量空间转变的桥梁:如果三元组(h,l,t)成立,则头实体embedding和关系embedding相加约等于尾实体的embedding。

    h + l ≈ t h+l ≈ t h+lt

  2. 利用空间传递不变形,找到一个实体和向量空间,使得整关系三元组之间的势能差值最小。

    m i n ( t − ( h + l ) ) min(t − ( h + l )) min(t(h+l))

  3. 模型

  • 给定一个训练集 S ,三元组表示为 ( h , l , t ) ( h , l , t ) (h,l,t),其中 h , t ∈ E , l ∈ L h , t ∈ E ,l ∈ L h,tE,lL ,实体和关系的嵌入维度设为 k,希望 h + l h + l h+l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有胡子的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值