MCP数据库服务接入dify,让你的智能体操作数据库

前两天的文章写了MySQL_MCP_Server_pro接入cherry_studio实现大模型操作数据库,这两天发现了个更全面支持数据库的项目,支持postgres、sqlite、oracle、mysql等数据库。

图片

今天咱们来搭建下,并将mcp服务接入dify,试着让智能体直接操作数据库。

1、首先咱们可以去mcp网站上搜索dbhub

https://mcp.so/zh/server/dbhub/bytebase?tab=content

或者去GitHub上面搜索也行。

https://github.com/bytebase/dbhub

上面都有介绍和搭建步骤。

2、支持docker部署,这就方便了,咱们直接docker部署下试下。

# PostgreSQL example
docker run --rm--init\
--name dbhub \
--publish8080:8080 \
   bytebase/dbhub \
--transport sse \
--port8080\
--dsn"postgres://user:password@localhost:5432/dbname?sslmode=disable"
# Demo mode with sample employee database
docker run --rm--init\
--name dbhub \
--publish8080:8080 \
   bytebase/dbhub \
--transport sse \
--port8080\
--demo
# Oracle example
docker run --rm--init\
--name dbhub \
--publish8080:8080 \
   bytebase/dbhub \
--transport sse \
--port8080\
--dsn"oracle://username:password@localhost:1521/service_name"
# Oracle example with thick mode for connecting to 11g or older 
docker run --rm--init\
--name dbhub \
--publish8080:8080 \
   bytebase/dbhub-oracle-thick \
--transport sse \
--port8080\
--dsn"oracle://username:password@localhost:1521/service_name"

这里面有个小知识点,密码不能带@符号,否则服务可能辨别密码失败,启动不成功。

Ubuntu上docker、docker-compose的安装参考这篇文章。

我这边用pgsql做下示例,启动成功后如图展示:

图片

3、接着咱们去接入dify。首先确定dify版本要大于1.0.0。

工具搜索mcp,选择这个插件。

可以下载后本地安装,我在线安装总是不成功。

图片

4、安装后配置下就可以了。将url改成自己的url地址。

图片

5、接着就可以去测试下了。创建一个agent,工具选择咱们刚刚配置好的工具

图片

效果还是很不错的。

6、但是如果我的mcp服务比较多怎么办?上面的那个工具每次调用重新改一下吗?

没关系,dify还有另一个插件。去dify市场搜agent插件。下载安装下

图片

图片

7、安装成功后就可以创建个工作流进行测试了。添加节点的时候添加agent。

图片

8、接着测试下

图片

哈哈,效果也不错。

这就是测试的整个过程,大家有遇到什么问题,欢迎留言,大家一起讨论学习。大家有什么想实现的功能或者想复现的项目也可以留言。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
### DifyMCP的关系及其开源特性 Dify 是一个专注于提升开发者体验的开源项目,其目标是帮助用户更高效地利用大模型的能力来解决实际问题。根据现有资料[^4],该项目支持 MCP(Model Context Protocol),这是一种由 Anthropic 提出的协议,旨在标准化 AI Agent 和外部工具之间的交互方式。 #### MCP的作用 MCP 被描述为一种类似于 USB-C 接口的标准,允许 AI Agent 通过统一的方式访问多种外部资源和工具[^2]。这种设计显著减少了开发者的负担,因为不再需要针对每种数据源或工具创建独立的接口。例如,在构建智能客服系统时,传统方法可能需要分别编写多个适配器以对接不同类型的数据库;而在采用 MCP 后,则只需依赖单一接口即可完成相同的功能需求[^1]。 #### 开源项目的贡献价值 对于像 Dify 这样的开源项目来说,集成 MCP 不仅增强了系统的灵活性,也提升了与其他生态系统的兼容性。这意味着任何遵循该协议的应用程序都可以无缝接入 Dify 所提供的服务之中。此外,由于它是完全开放源码的形式发布出来,因此社区成员可以根据自身业务场景自由定制扩展功能模块或者优化底层逻辑结构。 #### 技术架构分析 从整体上看,Dify 的技术栈应该涵盖了以下几个方面: - **核心引擎**:负责处理自然语言理解(NLU),对话状态跟踪(DST)以及动作规划(Action Planning). - **知识库管理系统(KBMS)**:用于存储并检索领域特定的信息片段,以便于生成更加精准的回答. - **插件机制(Plugin Framework)**:使得第三方开发者能够轻松添加新的技能集给虚拟助手赋予更多可能性. 值得注意的是,Cline 可能作为另一个例子展示了如何有效结合强大的预训练模型(Claude 3.5 Sonnet )来进行复杂任务分解执行过程中的表现形式之一.[^3] ```python # 示例代码展示如何初始化一个简单的AI代理并与外界通讯 from mcp import MCPClient def initialize_agent(): client = MCPClient() @client.on_message def handle_message(data): print(f"Received message from external source:{data}") return client.connect() initialize_agent() ``` 上述脚本简单演示了当接收到外部消息事件触发后的响应行为定义流程;当然实际情况会涉及到更多的参数配置选项以及其他高级特性的运用情况.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

q_q王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值