经典网络总结
1 LeNet-5
1.1 模型介绍
LeNet-5是由LeCun提出的一种用于识别手写数字和机器印刷字符的卷积神经网络(Convolutional
Neural Network,CNN) ,其命名来源于作者LeCun的名字,5则是其研究成果的代号,在LeNet-5
之前还有LeNet-4和LeNet-1鲜为人知。LeNet-5阐述了图像中像素特征之间的相关性能够由参数共享的
卷积操作所提取,同时使用卷积、下采样(池化)和非线性映射这样的组合结构,是当前流行的大多数
深度图像识别网络的基础。
1.2 网络结构
如图4.1所示,LeNet-5一共包含7层(输入层不作为网络结构),分别由2个卷积层、2个下采样层和3
个连接层组成,网络的参数配置如表4.1所示,其中下采样层和全连接层的核尺寸分别代表采样范围和
连接矩阵的尺寸(如卷积核尺寸中的“551/1, 6" 表示核大小为551 、步长为1且核个数为6的卷积核)。
1.3 模型特性
1.卷积网络使用一个3层的序列组合:卷积、下采样(池化)、非线性映射(LeNet-5最重要的特
性,奠定了目前深层卷积网络的基础)
2.使用卷积提取空间特征
3.使用映射的空间均值进行下采样
4.使用tanh或sigmiod进行非线性映射
5.多层神经网络(MLP)作为最终的分类器
6.层间的稀疏连接矩阵以避免巨大的计算开销