张量的定义
前面例子使用的数据存储在多维 Numpy 数组中,也叫张量(tensor)。一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量对这个领域非常重要,重要到 Google 的TensorFlow 都以它来命名。张量这一概念的核心在于,它是一个数据容器。它包含的数据几乎总是数值数据,因此它是数字的容器。你可能对矩阵很熟悉,它是二维张量。张量是矩阵向任意维度的推广[注意,张量的维度(dimension)通常叫作轴(axis)]。
向量
仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。
数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴。下面是一个 Numpy 向量。
>>> x = np.array([12, 3, 6, 14,

本文介绍了深度学习中张量的概念,包括张量的定义、向量、关键属性如轴的个数、形状和数据类型,以及张量操作。张量在实际应用中涉及向量数据、时间序列数据、图像和视频数据的处理。通过理解这些概念,能够更好地掌握深度学习的基本数据结构。
最低0.47元/天 解锁文章
2848

被折叠的 条评论
为什么被折叠?



