广义中值定理

这篇博客探讨了广义罗尔定理的证明,通过费马定理展示在某些条件下存在一点ξ使得导数为0。同时,介绍了广义拉格朗日和柯西中值定理,以及它们与常规中值定理的区别。接着,利用积分第一和第二中值定理,证明了在特定情况下,积分与函数值之间的关系。最后,通过一个例子展示了如何利用积分中值定理求解极限问题,强调了正确使用定理的重要性。
摘要由CSDN通过智能技术生成

广义罗尔定理(用费马定理证明)

f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (+)上连续且可导,并且 lim ⁡ x → − ∞ f ( x ) = lim ⁡ x → + ∞ f ( x ) = A \displaystyle \lim_{x \to -\infty}{f(x)}=\displaystyle \lim_{x \to +\infty}{f(x)}=A xlimf(x)=x+limf(x)=A,则 ∃ ξ ∈ ( − ∞ , + ∞ ) \exists \xi \in(-\infty,+\infty) ξ(+),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

证明:至少可取到一点 c ∈ R c \in R cR,使 f ( c ) ≠ A f(c) \neq A f(c)=A,否则 f ( x ) f(x) f(x)恒等于 A A A,对于任意的实数 ξ \xi ξ,都有 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

不妨设 f ( c ) < A f(c)<A f(c)<A,取 ε = A − f ( c ) 2 \varepsilon=\frac{A-f(c)}{2} ε=2Af(c),显然 ε > 0 \varepsilon > 0 ε>0

根据极限定义,由 lim ⁡ x → + ∞ f ( x ) = A \displaystyle \lim_{x \to +\infty}{f(x)}=A x+limf(x)=A可得
∃ X > c \exists X > c X>c,当 x > X x>X x>X时,有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε − ε < f ( x ) − A < ε -\varepsilon<f(x)-A<\varepsilon ε<f(x)A<ε f ( x ) > A − ε = A + f ( c ) 2 > f ( c ) f(x)>A-\varepsilon=\frac{A+f(c)}{2}>f(c) f(x)>Aε=2A+f(c)>f(c),任取 b > X b>X b>X,则有 b > c b>c b>c f ( b ) > f ( c ) f(b)>f(c) f(b)>f(c)

利用 lim ⁡ x → − ∞ f ( x ) = A \displaystyle \lim_{x \to -\infty}{f(x)}=A xlimf(x)=A,类似地可知存在 a < c a<c a<c,使 f ( a ) > f ( c ) f(a)>f(c) f(a)>f(c)

于是, f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则在闭区间 [ a , b ] [a,b] [a,b]上必有 f ( x ) f(x) f(x)的最小值点 ξ \xi ξ,由于闭区间 [ a , b ] [a,b] [a,b]的两个端点都不可能是 f ( x ) f(x) f(x)的最小值点,由此可知 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),根据费马定理可知 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

广义拉格朗日中值定理(不常见)

设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,并且 f + ′ ( x ) f'_+(x) f+(x) f − ′ ( x ) f'_-(x) f(x)存在,则至少存在一点 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b)及正数 p p p q q q p + q = 1 p+q=1 p+q=1,使得
f ( b ) − f ( a ) b − a = p f + ′ ( ξ ) + q f − ′ ( ξ ) \frac{f(b)-f(a)}{b-a}=pf'_+(\xi)+qf'_-(\xi) baf(b)f(a)=pf+(ξ)+qf(ξ)

证明:参考广义Cauchy中值定理

广义柯西中值定理(不常见)

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足

  1. f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上连续;
  2. f + ′ ( x ) f'_+(x) f+(x) f − ′ ( x ) f'_-(x) f(x) g + ′ ( x ) g'_+(x) g+(x) g − ′ ( x ) g'_-(x) g(x) [ a , b ] [a,b] [a,b]上存在。

则在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ \xi ξ及非负数 p p p q q q p + q = 1 p+q=1 p+q=1,使得
[ p f + ′ ( ξ ) + q f − ′ ( ξ ) ] [ g ( b ) − g ( a ) ] = [ p g + ′ ( ξ ) + q g − ′ ( ξ ) ] [ f ( b ) − f ( a ) ] [pf'_+(\xi)+qf'_-(\xi)][g(b)-g(a)]=[pg'_+(\xi)+qg'_-(\xi)][f(b)-f(a)] [pf+(ξ)+qf(ξ)][g(b)g(a)]=[pg+(ξ)+qg(ξ)][f(b)f(a)]

证明:参考广义Cauchy中值定理

积分第一中值定理(用柯西中值定理证明)

f ( x ) f(x) f(x) g ( x ) g(x) g(x)在[a,b]上连续,且g(x)在[a,b]上不变号,证明:

∃ ξ ∈ [ a , b ] , 使 得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \exists \xi \in[a,b],使得\displaystyle \int^{b}_{a}{f(x)g(x)dx}=f(\xi)\displaystyle \int^{b}_{a}{g(x)dx} ξ[a,b]使abf(x)g(x)dx=f(ξ)abg(x)dx

证明:当 g ( x ) ≡ 0 g(x)\equiv0 g(x)0时,显然成立
g ( x ) ≠ 0 g(x)\neq0 g(x)=0时,不妨设 g ( x ) > 0 g(x)>0 g(x)>0
F ( x ) = ∫ a x f ( t ) g ( t ) d t F(x)=\displaystyle \int^{x}_{a}{f(t)g(t)dt} F(x)=axf(t)g(t)dt g ( x ) = ∫ a x g ( t ) d t g(x)=\displaystyle \int^{x}_{a}{g(t)dt} g(x)=axg(t)dt
根据柯西中值定理 ∃ ξ ∈ ( a , b ) \exists \xi \in(a,b) ξ(a,b),使得

F ′ ( x ) G ′ ( x ) = F ( b ) − F ( a ) G ( b ) − G ( a ) \frac{F'(x)}{G'(x)}=\frac{F(b)-F(a)}{G(b)-G(a)} G(x)F(x)=G(b)G(a)F(b)F(a)

f ( ξ ) g ( ξ ) g ( ξ ) = ∫ a b f ( t ) g ( t ) d t − 0 ∫ a b g ( t ) d t − 0 \frac{f(\xi)g(\xi)}{g(\xi)}=\frac{\displaystyle \int^{b}_{a}{f(t)g(t)dt}-0}{\displaystyle \int^{b}_{a}{g(t)dt}-0} g(ξ)f(ξ)g(ξ)=abg(t)dt0abf(t)g(t)dt0

∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x , ξ ∈ [ a , b ] \displaystyle \int^{b}_{a}{f(x)g(x)dx}=f(\xi)\displaystyle \int^{b}_{a}{g(x)dx},\xi \in[a,b] abf(x)g(x)dx=f(ξ)abg(x)dxξ[a,b]

g ( x ) > 0 g(x)>0 g(x)>0 ξ ∈ [ a , b ] \xi \in[a,b] ξ[a,b]时,显然成立

同理可得 g ( x ) < 0 g(x)<0 g(x)<0也成立

∃ ξ ∈ [ a , b ] \exists \xi \in[a,b] ξ[a,b],使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \displaystyle \int^{b}_{a}{f(x)g(x)dx}=f(\xi)\displaystyle \int^{b}_{a}{g(x)dx} abf(x)g(x)dx=f(ξ)abg(x)dx

积分第二中值定理

f ( x ) f(x) f(x)在[a,b]上可积,g(x)在[a,b]上单调,证明:

∃ ξ ∈ [ a , b ] , 使 得 ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x + g ( b ) ∫ ξ b f ( x ) d x \exists \xi \in[a,b],使得\displaystyle \int^{b}_{a}{f(x)g(x)dx}=g(a)\displaystyle \int^{\xi}_{a}{f(x)dx}+g(b)\displaystyle \int^{b}_{\xi}{f(x)dx} ξ[a,b]使abf(x)g(x)dx=g(a)aξf(x)dx+g(b)ξbf(x)dx

例题

计算 lim ⁡ n → ∞ ∫ 0 1 x n 1 + x d x \displaystyle \lim_{n \to \infty}\displaystyle \int^{1}_{0}{\frac{x^n}{1+x}dx} nlim011+xxndx

由积分第一中值定理知, ∃ ξ n ∈ [ 0 , 1 ] \exists \xi_n \in[0,1] ξn[0,1]

lim ⁡ n → ∞ ∫ 0 1 x n 1 + x d x = lim ⁡ n → ∞ 1 1 + ξ n ∫ 0 1 x n d x = lim ⁡ n → ∞ 1 1 + ξ n ⋅ 1 n + 1 = 0 \displaystyle \lim_{n \to \infty}\displaystyle \int^{1}_{0}{\frac{x^n}{1+x}dx}=\displaystyle \lim_{n \to \infty}\frac{1}{1+\xi_n}\displaystyle \int^{1}_{0}{x^ndx}=\displaystyle \lim_{n \to \infty}\frac{1}{1+\xi_n} \cdot \frac{1}{n+1}=0 nlim011+xxndx=nlim1+ξn101xndx=nlim1+ξn1n+11=0

下面是错误做法:

由积分中值定理知, ∃ ξ n ∈ ( 0 , 1 ) \exists \xi_n \in(0,1) ξn(0,1)
lim ⁡ n → ∞ ∫ 0 1 x n 1 + x d x = lim ⁡ n → ∞ ξ n n 1 + ξ n = 0 \displaystyle \lim_{n \to \infty}\displaystyle \int^{1}_{0}{\frac{x^n}{1+x}dx}=\displaystyle \lim_{n \to \infty}\frac{\xi^n_n}{1+\xi_n}=0 nlim011+xxndx=nlim1+ξnξnn=0

因为 ξ n \xi_n ξn n n n有关, lim ⁡ n → ∞ ξ n \displaystyle \lim_{n \to \infty}\xi_n nlimξn是否为0证明起来很麻烦,也许 lim ⁡ n → ∞ ξ n = 1 \displaystyle \lim_{n \to \infty}\xi_n=1 nlimξn=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值