1、概念
紧密中心度(Closeness Centrality)衡量了某个顶点与其它顶点的平均距离,其值越高说明该顶点与其它顶点的距离越短。
2、公式
顶点 v i v_i vi的紧密中心度 C c C_c Cc:
C c ( v i ) = 1 ∑ v j ≠ v i l ( v i , v j ) C_c(v_i) =\frac{1}{\displaystyle \sum^{}_{v_j \neq v_i}l(v_i,v_j)} Cc(vi)=vj=vi∑l(vi,vj)1
其中 l ( v i , v j ) l(v_i,v_j ) l(vi,vj)表示顶点 v i v_i vi与顶点 v j v_j vj之间的最短路径长度。公式同时适用于加权图。
类似度中心度,紧密中心度对有向图也可以使用入度或者出度作为紧密中心度:
C
c
i
n
(
v
i
)
=
1
∑
v
j
≠
v
i
l
(
v
i
,
v
j
)
i
n
C^{in}_c(v_i) =\frac{1}{\displaystyle \sum^{}_{v_j \neq v_i}l^{in}_{(v_i,v_j)}}
Ccin(vi)=vj=vi∑l(vi,vj)in1
C
c
o
u
t
(
v
i
)
=
1
∑
v
j
≠
v
i
l
(
v
i
,
v
j
)
o
u
t
C^{out}_c(v_i) =\frac{1}{\displaystyle \sum^{}_{v_j \neq v_i}l^{out}_{(v_i,v_j)}}
Ccout(vi)=vj=vi∑l(vi,vj)out1
其中 l ( v i , v j ) i n l^{in}_{(v_i,v_j)} l(vi,vj)in表示顶点 v j v_j vj到顶点 v i v_i vi的最短路径长度; l ( v i , v j ) o u t l^{out}_{(v_i,v_j)} l(vi,vj)out表示顶点 v i v_i vi到顶点 v j v_j vj的最短路径长度。
使用入度时,紧密中心度衡量了信息到达顶点的能力,表示突出性;使用出度时,紧密中心度衡量了信息流出顶点的能力。
归一化
与前面的度中心度和介数中心度不同的是,紧密中心度需要最小紧密中心度来衡量不同规模的网络。
极端情况下,图的某个顶点可以仅通过距离为1的路径到达其余所有顶点,这就是距离最小和n-1出现的情况。因此紧密中心度的归一化为:
C c ′ ( v i ) = n − 1 C c ( v i ) C'_c(v_i) = \frac{n-1}{C_c(v_i)} Cc′(vi)=Cc(vi)n−1