1、概念
介数
在介绍这种中心度之前先来了解什么叫介数(Betweenness)。介数通常分为边介数和节点介数两种,其中
- 节点介数定义为网络中所有最短路径中经过该节点的路径的数目占最短路径数的比例。
- 边介数定义为网络中所有最短路径中经过该边的路径的数目占最短路径数的比例。
介数反映了相应的节点或者边在整个网络中的作用和影响力,是一个重要的全局几何量,具有很强的现实意义。
例如,在社会关系网或技术网络中,介数的分布特征反映了不同人员、资源和技术在相应生产关系中的地位,这对于发现和保护关键资源、技术和人才具有重要意义。
定义
介数中心度(Betweenness Centrality)最早在1977年被Freeman提出,在1979年被定义,它能够发现对图信息流影响程度大的顶点,其值越大说明顶点对信息流的影响程度越大。
顶点的介数中心度指的是网络中每对顶点之间的最短路径数作为分母,这其中经过该顶点的最短路径数作为分子,并求和。
因此Betweenness Centrality更准确的翻译应该是介数中心度,而不是中间中心度。
2、公式
顶点 v i v_i vi的介数中心度 C b C_b Cb:
C b ( v i ) = ∑ i ≠ j ≠ v i , i < j g i j ( v i ) g i j C_b(v_i) = \displaystyle \sum^{}_{i \neq j \neq v_i,i < j}\frac{g_{ij}(v_i)}{g_{ij}} Cb(vi)=i=j=vi,i<j∑gijgij(vi)
其中 g i j g_{ij} gij表示从顶点 i i i到顶点 j j j的最短路径的数目, g i j ( v i ) g_{ij}(v_i) gij(vi)表示从顶点 i i i到顶点 j j j经过顶点 v i v_i vi的最短路径的数目。
归一化
类似于度中心度,介数中心度的值取决于其网络的大小,为了比较不同大小的图中心度大小,需要一个消除网络大小影响的方法计算独立于网络的相对数值,即最大介数中心度。
注意到当顶点 v i v_i vi处于连接任意顶点对 ( v i , v j ) (v_i,v_j) (vi,vj)的所有最短路径中时,该顶点的介数中心度对应最大值1。因此最大介数中心度为:
C b ( v i ) = ∑ i ≠ j ≠ v i , i < j g i j ( v i ) g i j = ∑ i ≠ j ≠ v i , i < j 1 = 2 ( n − 1 2 ) 2 = ( n − 1 ) ( n − 2 ) 2 C_b(v_i) = \displaystyle \sum^{}_{i \neq j \neq v_i,i < j}\frac{g_{ij}(v_i)}{g_{ij}}= \displaystyle \sum^{}_{i \neq j \neq v_i,i < j}1=\frac{2\tbinom{n-1}{2}}{2}=\frac{(n-1)(n-2)}{2} Cb(vi)=i=j=vi,i<j∑gijgij(vi)=i=j=vi,i<j∑1=22(2n−1)=2(n−1)(n−2)
故此得到归一化的介数中心度
C b ′ ( v i ) = 2 C b ( v i ) ( n − 1 ) ( n − 2 ) C'_b(v_i) = \frac{2C_b(vi)}{(n-1)(n-2)} Cb′(vi)=(n−1)(n−2)2Cb(vi)