正态分布
概率密度为:
φ(x)=12πσe−(x−μ)22σ2,−∞<x<+∞,\varphi(x)=\frac{1}{\displaystyle \sqrt{2\pi}\sigma}e^{\displaystyle -\frac{(x-\mu)^2}{\displaystyle 2\sigma^2}},-\infty<x<+\infty,φ(x)=2πσ1e−2σ2(x−μ)2,−∞<x<+∞,
其中σ>0\sigma>0σ>0,−∞<μ<+∞-\infty<\mu<+\infty−∞<μ<+∞,φ(x)\varphi(x)φ(x)关于x=μx=\mux=μ对称。
伽马函数
Γ(α)=∫0+∞xα−1e−xdx(α>0)\Gamma(\alpha)=\displaystyle \int^{+\infty}_{0}{x^{\alpha-1}e^{-x}dx}(\alpha>0)Γ(α)=∫0+∞xα−1e−xdx(α>0)
性质:
Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(12)=π,Γ(1)=1\Gamma(\alpha+1)=\alpha\Gamma(\alpha),\Gamma(n+1)=n!,\Gamma(\frac{1}{2})=\sqrt{\pi},\Gamma(1)=1Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(21)=π,Γ(1)=1
例题
若XXX~N(0,1)N(0,1)N(0,1),求
E(Xn)=∫−∞+∞xn12πe−x22dx
E(X^n)=
\displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}
E(Xn)=∫−∞+∞xn2π1e−2x2dx
若n为奇数,则E(Xn)=0E(X^n)=0E(Xn)=0
若n为偶数,则
E(Xn)=∫−∞+∞xn12πe−x22dx=22π∫0+∞xn−1e−x22dx22=22π∫0+∞2tn−1e−tdt=22n−2πΓ(n−12+1)=22n−2π⋅n−12Γ(n−12)=22n−2π⋅n−12Γ(n−32+1)=⋅⋅⋅=22n−2π⋅n−12⋅n−32⋅⋅⋅⋅⋅π=2n−22n2−1⋅(n−1)⋅(n−3)⋅⋅⋅⋅⋅1=(n−1)⋅(n−3)⋅⋅⋅⋅⋅1
\begin{aligned}
E(X^n)
&=\displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}\\
&=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{x^{n-1}e^{\displaystyle-\frac{x^2}{2}}d\frac{x^2}{2}}\\
&=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{\sqrt{2t}^{n-1}e^{\displaystyle-t}dt}\\
&=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\Gamma(\frac{n-1}{2}+1)\\
&=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-1}{2})\\
&=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-3}{2}+1)\\
&=···\\
&=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\cdot \frac{n-3}{2}\cdot···\cdot\sqrt{\pi}\\
&=\frac{\sqrt{2}^{n-2}}{2^{\frac{n}{2}-1}}\cdot (n-1)\cdot (n-3)\cdot···\cdot 1\\
&=(n-1)\cdot (n-3)\cdot···\cdot 1
\end{aligned}
E(Xn)=∫−∞+∞xn2π1e−2x2dx=2π2∫0+∞xn−1e−2x2d2x2=2π2∫0+∞2tn−1e−tdt=π22n−2Γ(2n−1+1)=π22n−2⋅2n−1Γ(2n−1)=π22n−2⋅2n−1Γ(2n−3+1)=⋅⋅⋅=π22n−2⋅2n−1⋅2n−3⋅⋅⋅⋅⋅π=22n−12n−2⋅(n−1)⋅(n−3)⋅⋅⋅⋅⋅1=(n−1)⋅(n−3)⋅⋅⋅⋅⋅1
因此,
E(Xn)=∫−∞+∞xn12πe−x22dx={0,n为奇数,(n−1)⋅(n−3)⋅⋅⋅1,n为偶数.
E(X^n)=
\displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}=
\left\{\begin{matrix}
0&,& n为奇数,\\
(n-1)\cdot (n-3)\cdot\cdot\cdot 1&,& n为偶数.\\
\end{matrix}\right.
E(Xn)=∫−∞+∞xn2π1e−2x2dx={0(n−1)⋅(n−3)⋅⋅⋅1,,n为奇数,n为偶数.
实际上,不管方差是多少,只要数学期望为0,都有这个结论,大家可以自行证明。