正态分布与伽马函数

正态分布

概率密度为:
φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ , \varphi(x)=\frac{1}{\displaystyle \sqrt{2\pi}\sigma}e^{\displaystyle -\frac{(x-\mu)^2}{\displaystyle 2\sigma^2}},-\infty<x<+\infty, φ(x)=2π σ1e2σ2(xμ)2,<x<+,
其中 σ > 0 \sigma>0 σ>0 − ∞ < μ < + ∞ -\infty<\mu<+\infty <μ<+ φ ( x ) \varphi(x) φ(x)关于 x = μ x=\mu x=μ对称。

伽马函数

Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x ( α > 0 ) \Gamma(\alpha)=\displaystyle \int^{+\infty}_{0}{x^{\alpha-1}e^{-x}dx}(\alpha>0) Γ(α)=0+xα1exdx(α>0)
性质:
Γ ( α + 1 ) = α Γ ( α ) , Γ ( n + 1 ) = n ! , Γ ( 1 2 ) = π , Γ ( 1 ) = 1 \Gamma(\alpha+1)=\alpha\Gamma(\alpha),\Gamma(n+1)=n!,\Gamma(\frac{1}{2})=\sqrt{\pi},\Gamma(1)=1 Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(21)=π ,Γ(1)=1

例题

X X X~ N ( 0 , 1 ) N(0,1) N(0,1),求
E ( X n ) = ∫ − ∞ + ∞ x n 1 2 π e − x 2 2 d x E(X^n)= \displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx} E(Xn)=+xn2π 1e2x2dx
若n为奇数,则 E ( X n ) = 0 E(X^n)=0 E(Xn)=0
若n为偶数,则
E ( X n ) = ∫ − ∞ + ∞ x n 1 2 π e − x 2 2 d x = 2 2 π ∫ 0 + ∞ x n − 1 e − x 2 2 d x 2 2 = 2 2 π ∫ 0 + ∞ 2 t n − 1 e − t d t = 2 2 n − 2 π Γ ( n − 1 2 + 1 ) = 2 2 n − 2 π ⋅ n − 1 2 Γ ( n − 1 2 ) = 2 2 n − 2 π ⋅ n − 1 2 Γ ( n − 3 2 + 1 ) = ⋅ ⋅ ⋅ = 2 2 n − 2 π ⋅ n − 1 2 ⋅ n − 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ π = 2 n − 2 2 n 2 − 1 ⋅ ( n − 1 ) ⋅ ( n − 3 ) ⋅ ⋅ ⋅ ⋅ ⋅ 1 = ( n − 1 ) ⋅ ( n − 3 ) ⋅ ⋅ ⋅ ⋅ ⋅ 1 \begin{aligned} E(X^n) &=\displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}\\ &=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{x^{n-1}e^{\displaystyle-\frac{x^2}{2}}d\frac{x^2}{2}}\\ &=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{\sqrt{2t}^{n-1}e^{\displaystyle-t}dt}\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\Gamma(\frac{n-1}{2}+1)\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-1}{2})\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-3}{2}+1)\\ &=···\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\cdot \frac{n-3}{2}\cdot···\cdot\sqrt{\pi}\\ &=\frac{\sqrt{2}^{n-2}}{2^{\frac{n}{2}-1}}\cdot (n-1)\cdot (n-3)\cdot···\cdot 1\\ &=(n-1)\cdot (n-3)\cdot···\cdot 1 \end{aligned} E(Xn)=+xn2π 1e2x2dx=2π 20+xn1e2x2d2x2=2π 20+2t n1etdt=π 22 n2Γ(2n1+1)=π 22 n22n1Γ(2n1)=π 22 n22n1Γ(2n3+1)==π 22 n22n12n3π =22n12 n2(n1)(n3)1=(n1)(n3)1
因此,
E ( X n ) = ∫ − ∞ + ∞ x n 1 2 π e − x 2 2 d x = { 0 , n 为 奇 数 , ( n − 1 ) ⋅ ( n − 3 ) ⋅ ⋅ ⋅ 1 , n 为 偶 数 . E(X^n)= \displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}= \left\{\begin{matrix} 0&,& n为奇数,\\ (n-1)\cdot (n-3)\cdot\cdot\cdot 1&,& n为偶数.\\ \end{matrix}\right. E(Xn)=+xn2π 1e2x2dx={0(n1)(n3)1,,n,n.
实际上,不管方差是多少,只要数学期望为0,都有这个结论,大家可以自行证明。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值