正态分布与伽马函数

本文详细介绍了正态分布的概率密度函数及其性质,并通过一个具体例子展示了如何利用伽马函数计算正态分布中随机变量的偶数次矩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正态分布

概率密度为:
φ(x)=12πσe−(x−μ)22σ2,−∞<x<+∞,\varphi(x)=\frac{1}{\displaystyle \sqrt{2\pi}\sigma}e^{\displaystyle -\frac{(x-\mu)^2}{\displaystyle 2\sigma^2}},-\infty<x<+\infty,φ(x)=2πσ1e2σ2(xμ)2,<x<+,
其中σ>0\sigma>0σ>0−∞<μ<+∞-\infty<\mu<+\infty<μ<+φ(x)\varphi(x)φ(x)关于x=μx=\mux=μ对称。

伽马函数

Γ(α)=∫0+∞xα−1e−xdx(α>0)\Gamma(\alpha)=\displaystyle \int^{+\infty}_{0}{x^{\alpha-1}e^{-x}dx}(\alpha>0)Γ(α)=0+xα1exdx(α>0)
性质:
Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(12)=π,Γ(1)=1\Gamma(\alpha+1)=\alpha\Gamma(\alpha),\Gamma(n+1)=n!,\Gamma(\frac{1}{2})=\sqrt{\pi},\Gamma(1)=1Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(21)=π,Γ(1)=1

例题

XXX~N(0,1)N(0,1)N(0,1),求
E(Xn)=∫−∞+∞xn12πe−x22dx E(X^n)= \displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx} E(Xn)=+xn2π1e2x2dx
若n为奇数,则E(Xn)=0E(X^n)=0E(Xn)=0
若n为偶数,则
E(Xn)=∫−∞+∞xn12πe−x22dx=22π∫0+∞xn−1e−x22dx22=22π∫0+∞2tn−1e−tdt=22n−2πΓ(n−12+1)=22n−2π⋅n−12Γ(n−12)=22n−2π⋅n−12Γ(n−32+1)=⋅⋅⋅=22n−2π⋅n−12⋅n−32⋅⋅⋅⋅⋅π=2n−22n2−1⋅(n−1)⋅(n−3)⋅⋅⋅⋅⋅1=(n−1)⋅(n−3)⋅⋅⋅⋅⋅1 \begin{aligned} E(X^n) &=\displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}\\ &=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{x^{n-1}e^{\displaystyle-\frac{x^2}{2}}d\frac{x^2}{2}}\\ &=\frac{2}{\sqrt{2\pi}}\displaystyle \int^{+\infty}_{0}{\sqrt{2t}^{n-1}e^{\displaystyle-t}dt}\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\Gamma(\frac{n-1}{2}+1)\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-1}{2})\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\Gamma(\frac{n-3}{2}+1)\\ &=···\\ &=\frac{2\sqrt{2}^{n-2}}{\sqrt{\pi}}\cdot \frac{n-1}{2}\cdot \frac{n-3}{2}\cdot···\cdot\sqrt{\pi}\\ &=\frac{\sqrt{2}^{n-2}}{2^{\frac{n}{2}-1}}\cdot (n-1)\cdot (n-3)\cdot···\cdot 1\\ &=(n-1)\cdot (n-3)\cdot···\cdot 1 \end{aligned} E(Xn)=+xn2π1e2x2dx=2π20+xn1e2x2d2x2=2π20+2tn1etdt=π22n2Γ(2n1+1)=π22n22n1Γ(2n1)=π22n22n1Γ(2n3+1)==π22n22n12n3π=22n12n2(n1)(n3)1=(n1)(n3)1
因此,
E(Xn)=∫−∞+∞xn12πe−x22dx={0,n为奇数,(n−1)⋅(n−3)⋅⋅⋅1,n为偶数. E(X^n)= \displaystyle \int^{+\infty}_{-\infty}{x^n\frac{1}{\sqrt{2\pi}}e^{\displaystyle-\frac{x^2}{2}}dx}= \left\{\begin{matrix} 0&,& n为奇数,\\ (n-1)\cdot (n-3)\cdot\cdot\cdot 1&,& n为偶数.\\ \end{matrix}\right. E(Xn)=+xn2π1e2x2dx={0(n1)(n3)1,,n,n.
实际上,不管方差是多少,只要数学期望为0,都有这个结论,大家可以自行证明。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值