伽马函数-利用偶函数性质与换元-正态分布

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过 Euler integral 幂函数和自然指数函数乘积的积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.
伽马函数的“三位一体”
Γ ( 1 ) = 1 , Γ ( 1 2 ) = π 由 标 准 正 太 分 布 的 对 称 知 ∫ 0 + ∞ e − 1 2 x 2 d x = π 2 , 只 需 要 数 字 的 移 项 。 \Gamma(1) =1,\Gamma(\frac { 1 } { 2 }) =\sqrt { \pi }\\ 由标准正太分布的对称知\int _ { 0 } ^ { +\infty }e ^ { -\frac { 1 } { 2 }x ^ { 2 } }dx=\sqrt { \frac {\pi} { 2 }},只需要数字的移项。 Γ(1)=1Γ(21)=π 0+e21x2dx=2π ,

对阶乘的推广(只不过相差1,n-1的阶乘)z-1:
Γ ( a ) = ( a − 1 ) Γ ( a − 1 ) \Gamma(a) =(a-1)\Gamma(a-1) Γ(a)=(a1)Γ(a1)
伽马分布1
伽马分布


令 t = x 2 , x = t 令t=x^2,x= \sqrt { t } t=x2x=t
带入积分
∫ 0 ∞ e − x 2 d x = 1 2 Γ ( 1 2 ) = π 2 \int _ { 0 } ^ { \infty }e^{-x^2} dx=\frac { 1 } { 2 }\Gamma(\frac { 1 } { 2 })=\frac { \sqrt { \pi } } { 2 } 0ex2dx=21Γ(21)=2π

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值