矩阵微积分

向量序列的极限

x ( k ) , x ∈ C n ( k = 1 , 2 , ⋯   ) \mathbf{x}^{(k)},\mathbf{x}\in\mathbb{C}^n\left(k=1,2,\cdots\right) x(k),xCn(k=1,2,)
如果

∥ x ( k ) − x ∥ → 0 , k → ∞ \|\mathbf{x}^{(k)}-\mathbf{x}\|\to 0,\quad k\to \infty x(k)x0,k
则称向量序列 { x ( k ) } \left\{\mathbf{x}^{(k)}\right\} {x(k)}收敛于向量 x \mathbf{x} x,记为
lim ⁡ k → + ∞ x ( k ) = x \lim\limits_{k\to +\infty}\mathbf{x}^{(k)}=\mathbf{x} k+limx(k)=x
由向量范数之间的等价关系,在某一向量范数意义下收敛,则在其他向量范数意义下也一定收敛

定理1

x ( k ) = ( x 1 ( k ) x 2 ( k ) ⋮ x n ( k ) ) , x = ( x 1 x 2 ⋮ x n ) ∈ C n \mathbf{x}^{(k)}=\begin{pmatrix} x_1^{(k)}\\ x_2^{(k)}\\ \vdots\\ x_n^{(k)}\\ \end{pmatrix},\mathbf{x}=\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n\\ \end{pmatrix}\in\mathbb{C}^n x(k)= x1(k)x2(k)xn(k) ,x= x1x2xn Cn,则向量序列 { x ( k ) } \left\{\mathbf{x}^{(k)}\right\} {x(k)}收敛于 x \mathbf{x} x的充要条件为每一个坐标分量序列 { x i ( k ) } \left\{x_i^{(k)}\right\} {xi(k)}收敛于 x i x_i xi,即
lim ⁡ k → + ∞ x i ( k ) = x i , i = 1 , 2 , ⋯   , n \lim\limits_{k\to +\infty}x_i^{(k)}=x_i,\quad i=1,2,\cdots, n k+limxi(k)=xi,i=1,2,,n
也叫按坐标收敛

证明:
必要性:设 ∥ x ∥ = ∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \|\mathbf{x}\|=\|\mathbf{x}\|_\infty=\max\limits_{i}\left|x_i\right| x=x=imaxxi,则
∥ x ( k ) − x ∥ ∞ → 0 , k → + ∞ \|\mathbf{x}^{(k)}-\mathbf{x}\|_\infty\to 0,\quad k\to +\infty x(k)x0,k+
由于 ∥ x ( k ) − x ∥ ∞ = max ⁡ i ∣ x i ( k ) − x i ∣ ≥ ∣ x i ( k ) − x i ∣ \|\mathbf{x}^{(k)}-\mathbf{x}\|_\infty=\max\limits_{i}\left|x_i^{(k)}-x_i\right|\ge \left|x_i^{(k)}-x_i\right| x(k)x=imax xi(k)xi xi(k)xi
所以
∣ x i ( k ) − x i ∣ → 0 \left|x_i^{(k)}-x_i\right|\to 0 xi(k)xi 0

lim ⁡ k → + ∞ x i ( k ) = x i , i = 1 , 2 , ⋯   , n \lim\limits_{k\to +\infty}x_i^{(k)}=x_i,\quad i=1,2,\cdots, n k+limxi(k)=xi,i=1,2,,n

充分性:
lim ⁡ k → + ∞ x i ( k ) = x i , i = 1 , 2 , ⋯   , n \lim\limits_{k\to +\infty}x_i^{(k)}=x_i,\quad i=1,2,\cdots, n k+limxi(k)=xi,i=1,2,,n

lim ⁡ k → + ∞ max ⁡ i ∣ x i ( k ) − x i ∣ = 0 \lim\limits_{k\to +\infty}\max\limits_{i}\left|x_i^{(k)}-x_i\right|=0 k+limimax xi(k)xi =0

∥ x ( k ) − x ∥ ∞ → 0 , k → + ∞ \|\mathbf{x}^{(k)}-\mathbf{x}\|_\infty\to 0,\quad k\to +\infty x(k)x0,k+

由范数的等价性,上述结论对 C n \mathbb{C}^n Cn中的任意向量范数均成立

矩阵序列的极限

设矩阵序列 { A ( k ) } \left\{\mathbf{A}^{(k)}\right\} {A(k)},其中 A ( k ) = ( a i j ( k ) ∈ C m × n \mathbf{A}^{(k)}=\left(a_{ij}^{(k}\right)\in\mathbb{C}^{m\times n} A(k)=(aij(k)Cm×n
k → + ∞ k\to +\infty k+时, a i j ( k ) → a i j a_{ij}^{(k)}\to a_{ij} aij(k)aij,则称 { A ( k ) } \left\{\mathbf{A}^{(k)}\right\} {A(k)}收敛,并把 A \mathbf{A} A叫做 { A ( k ) } \left\{\mathbf{A}^{(k)}\right\} {A(k)}的极限,记为
lim ⁡ k → + ∞ A ( k ) = A \lim\limits_{k\to +\infty}\mathbf{A}^{(k)}=\mathbf{A} k+limA(k)=A

上面定义和下面这个范数意义下的收敛等价
∥ A ( k ) − A ∥ → 0 , k → + ∞ \|\mathbf{A}^{(k)}-\mathbf{A}\|\to 0,\quad k\to +\infty A(k)A0,k+
其中 ∥ ⋅ ∥ \|\cdot\| 为任一矩阵范数

证明:

考虑 ∥ A ∥ = ∑ i = 1 m ∑ j = 1 n = ∣ a i j ∣ \|\mathbf{A}\|=\sum_{i=1}^{m}\sum_{j=1}^{n}=\left|a_{ij}\right| A=i=1mj=1n=aij

lim ⁡ k → + ∞ A ( k ) = A \lim\limits_{k\to +\infty}\mathbf{A}^{(k)}=\mathbf{A} k+limA(k)=A

lim ⁡ k → + ∞ a i j ( k ) = a i j , i = 1 , 2 , ⋯   , m , j = 1 , 2 , ⋯   , n \lim\limits_{k\to +\infty}a_{ij}^{(k)}=a_{ij},\quad i=1,2,\cdots,m,\quad j=1,2,\cdots,n k+limaij(k)=aij,i=1,2,,m,j=1,2,,n
于是
lim ⁡ k → + ∞ ∣ a i j ( k ) − a i j ∣ = 0 \lim\limits_{k\to +\infty}\left|a_{ij}^{(k)}-a_{ij}\right|=0 k+lim aij(k)aij =0

lim ⁡ k → + ∞ ∥ A ( k ) − A ∥ = lim ⁡ k → + ∞ ∑ i , j = 1 n ∣ a i j ( k ) − a i j ∣ = 0 \lim\limits_{k\to +\infty}\|\mathbf{A}^{(k)}-\mathbf{A}\|=\lim\limits_{k\to +\infty}\sum_{i,j=1}^{n}\left| a_{ij}^{(k)}-a_{ij}\right|=0 k+limA(k)A=k+limi,j=1n aij(k)aij =0

反之,设 lim ⁡ k → + ∞ ∥ A ( k ) − A ∥ = 0 \lim\limits_{k\to +\infty}\|\mathbf{A}^{(k)}-\mathbf{A}\|=0 k+limA(k)A=0,即
lim ⁡ k → + ∞ ∑ i = 1 m ∑ j = 1 n ∣ a i j ( k ) − a i j ∣ = 0 \lim\limits_{k\to +\infty}\sum_{i=1}^{m}\sum_{j=1}^{n}\left| a_{ij}^{(k)}-a_{ij}\right|=0 k+limi=1mj=1n aij(k)aij =0
所以
lim ⁡ k → + ∞ ∣ a i j ( k ) − a i j ∣ = 0 \lim\limits_{k\to +\infty}\left|a_{ij}^{(k)}-a_{ij}\right|=0 k+lim aij(k)aij =0

lim ⁡ k → + ∞ A ( k ) = A \lim\limits_{k\to +\infty}\mathbf{A}^{(k)}=\mathbf{A} k+limA(k)=A

再根据矩阵范数的等价性,
lim ⁡ k → + ∞ ∥ A ( k ) − A ∥ = 0 ⇔ lim ⁡ k → + ∞ ∥ A ( k ) − A ∥ a = 0 \lim\limits_{k\to +\infty}\|\mathbf{A}^{(k)}-\mathbf{A}\|=0\Leftrightarrow\lim\limits_{k\to +\infty}\|\mathbf{A}^{(k)}-\mathbf{A}\|_a=0 k+limA(k)A=0k+limA(k)Aa=0
其中 ∥ ⋅ ∥ a \|\cdot\|_a a为任一矩阵范数

定理2

ρ ( A ) < 1 ⇔ lim ⁡ k → ∞ A k = 0 \rho\left(\mathbf{A}\right)<1 \Leftrightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=0 ρ(A)<1klimAk=0

证明:
A \mathbf{A} A的特征值为 λ \lambda λ,对应的特征向量为 v \mathbf{v} v
假设 lim ⁡ k → ∞ A k = 0 \lim\limits_{k\to\infty}\mathbf{A}^k=0 klimAk=0
0 = ( lim ⁡ k → ∞ A k ) v = lim ⁡ k → ∞ ( A k v ) = lim ⁡ k → ∞ ( λ k v ) = v lim ⁡ k → ∞ λ k \begin{aligned} 0&=\left(\lim\limits_{k\to\infty}\mathbf{A}^k\right)\mathbf{v}\\ &=\lim\limits_{k\to\infty}\left(\mathbf{A}^k\mathbf{v}\right)\\ &=\lim\limits_{k\to\infty}\left(\lambda^k\mathbf{v}\right)\\ &=\mathbf{v}\lim\limits_{k\to\infty}\lambda^k\\ \end{aligned} 0=(klimAk)v=klim(Akv)=klim(λkv)=vklimλk
因为 v ≠ 0 \mathbf{v}\neq 0 v=0,
lim ⁡ k → ∞ λ k = 0 ⇒ ∣ λ ∣ < 1 ⇒ ρ ( A ) < 1 \lim\limits_{k\to\infty}\lambda^k=0\Rightarrow \left|\lambda\right|<1 \Rightarrow \rho\left(\mathbf{A}\right)<1 klimλk=0λ<1ρ(A)<1

假设 ρ ( A ) < 1 \rho\left(\mathbf{A}\right)<1 ρ(A)<1
由若尔当分解定理
A = S ( J n 1 ( λ 1 ) 0 ⋯ 0 0 J n 2 ( λ 2 ) ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 J n k ( λ k ) ) S − 1 \mathbf{A}=\mathbf{S}\begin{pmatrix} \mathbf{J}_{n_1}\left(\lambda_1\right)&0&\cdots&0\\ 0&\mathbf{J}_{n_2}\left(\lambda_2\right)&\ddots&\vdots\\ \vdots&\ddots&\ddots&0\\ 0&\cdots&0&\mathbf{J}_{n_k}\left(\lambda_k\right)\\ \end{pmatrix}\mathbf{S}^{-1} A=S Jn1(λ1)000Jn2(λ2)000Jnk(λk) S1
其中 S \mathbf{S} S是可逆矩阵, λ 1 , ⋯   , λ k \lambda_1,\cdots,\lambda_k λ1,,λk A \mathbf{A} A的特征值, n 1 + ⋯ + n k = n n_1+\cdots+n_k=n n1++nk=n
由若尔当块的性质,对于充分大的 k k k,有
J n i k ( λ i ) = [ λ i k ( k 1 ) λ i k − 1 ( k 2 ) λ i k − 2 ⋯ ( k n i − 1 ) λ i k − n i + 1 0 λ i k ( k 1 ) λ i k − 1 ⋯ ( k n i − 2 ) λ i k − n i + 2 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 … λ i k ( k 1 ) λ i k − 1 0 0 ⋯ 0 λ i k ] \mathbf{J}_{n_{i}}^{k}\left(\lambda_{i}\right)=\left[\begin{array}{ccccc} \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} & \left(\begin{array}{c} k \\ 2 \end{array}\right) \lambda_{i}^{k-2} & \cdots & \left(\begin{array}{c} k \\ n_{i}-1 \end{array}\right) \lambda_{i}^{k-n_{i}+1} \\ 0 & \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} & \cdots & \left(\begin{array}{c} k \\ n_{i}-2 \end{array}\right) \lambda_{i}^{k-n_{i}+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_{i}^{k} & \left(\begin{array}{c} k \\ 1 \end{array}\right) \lambda_{i}^{k-1} \\ 0 & 0 & \cdots & 0 & \lambda_{i}^{k} \end{array}\right] Jnik(λi)= λik000(k1)λik1λik00(k2)λik2(k1)λik1λik0(kni1)λikni+1(kni2)λikni+2(k1)λik1λik
所以
lim ⁡ k → ∞ J n i k = 0 ⇒ lim ⁡ k → ∞ J k = 0 ⇒ lim ⁡ k → ∞ A k = lim ⁡ k → ∞ S J k S − 1 = S ( lim ⁡ k → ∞ J k ) S − 1 = 0 \lim\limits_{k\to\infty}\mathbf{J}_{n_i}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{J}^k=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{A}^k=\lim\limits_{k\to\infty}\mathbf{S}\mathbf{J}^k\mathbf{S}^{-1}=\mathbf{S}\left(\lim\limits_{k\to\infty}\mathbf{J}^k\right)\mathbf{S}^{-1}=0 klimJnik=0klimJk=0klimAk=klimSJkS1=S(klimJk)S1=0

定理3

A ∈ C n × n \mathbf{A}\in\mathbb{C}^{n\times n} ACn×n,若对于矩阵 A \mathbf{A} A的某一范数有 ∥ A ∥ < 1 \|\mathbf{A}\|<1 A<1,则
lim ⁡ k → + ∞ A k = 0 \lim\limits_{k\to +\infty}\mathbf{A}^k=\mathbf{0} k+limAk=0
证明:因为 ∥ A k ∥ ≤ ∥ A ∥ k \|\mathbf{A}^k\|\le \|\mathbf{A}\|^k AkAk,因为 ∥ A ∥ < 1 \|\mathbf{A}\|<1 A<1,所以
lim ⁡ k → + ∞ ∥ A k ∥ = 0 ⇒ lim ⁡ k → + ∞ ∥ A k − 0 ∥ = 0 ⇒ lim ⁡ k → + ∞ A k = 0 \lim\limits_{k\to +\infty}\|\mathbf{A}^k\|=0\Rightarrow \lim\limits_{k\to +\infty}\|\mathbf{A}^k-\mathbf{0}\|=0\Rightarrow \lim\limits_{k\to +\infty}\mathbf{A}^k=\mathbf{0} k+limAk=0k+limAk0=0k+limAk=0

定理4

lim ⁡ k → ∞ A ( k ) = 0 \lim\limits_{k\to\infty}\mathbf{A}^{(k)}=\mathbf{0} klimA(k)=0的充要条件是
lim ⁡ k → ∞ A ( k ) x = 0 , ∀ x ∈ R n \lim\limits_{k\to\infty}\mathbf{A}^{(k)}\mathbf{x}=\mathbf{0},\quad \forall \mathbf{x}\in\mathbb{R}^n klimA(k)x=0,xRn

证明:
对于任意诱导范数
∥ A ( k ) x ∣ ∣ ≤ ∥ A ( k ) ∥ ∥ x ∥ \|\mathbf{A}^{(k)}\mathbf{x}||\le\|\mathbf{A}^{(k)}\| \|\mathbf{x}\| A(k)x∣∣A(k)∥∥x

必要性:
如果 lim ⁡ k → ∞ A ( k ) = 0 \lim\limits_{k\to\infty}\mathbf{A}^{(k)}=\mathbf{0} klimA(k)=0,则 lim ⁡ k → ∞ ∥ A ( k ) ∥ = 0 \lim\limits_{k\to\infty}\|\mathbf{A}^{(k)}\|=0 klimA(k)=0
∀ x ∈ R n , lim ⁡ k → ∞ ∥ A ( k ) x ∥ = 0 ⇒ lim ⁡ k → ∞ A ( k ) x = 0 \forall\mathbf{x}\in\mathbb{R}^n,\quad \lim\limits_{k\to\infty}\|\mathbf{A}^{(k)}\mathbf{x}\|=0\Rightarrow \lim\limits_{k\to\infty}\mathbf{A}^{(k)}\mathbf{x}=\mathbf{0} xRn,klimA(k)x=0klimA(k)x=0

充分性:
lim ⁡ k → ∞ A ( k ) e j = 0 \lim\limits_{k\to\infty}\mathbf{A}^{(k)}\mathbf{e}_j=\mathbf{0} klimA(k)ej=0
也就是说第 j j j列元素的极限均为0,故 lim ⁡ k → ∞ A ( k ) = 0 \lim\limits_{k\to\infty}\mathbf{A}^{(k)}=\mathbf{0} klimA(k)=0

摸了,后面的等用到了再说

矩阵级数

矩阵函数

参考:
矩阵论·第2版 (方保镕,周继东,李医民) (z-library就有)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值