伯努利分布和二项分布

文章介绍了伯努利分布,它是只有两种可能结果(成功/失败)的随机事件的概率模型,成功概率为p,失败概率为1-p。接着讨论了二项分布,它描述了在n次独立的伯努利试验中成功发生k次的概率,成功概率为p。同时,给出了伯努利分布和二项分布的期望与方差的计算公式。
摘要由CSDN通过智能技术生成

0-1分布/伯努利分布

Bernoulli distribution

只先进行一次事件试验,该事件发生的概率为 p p p,不发生的概率为 1 − p 1-p 1p
P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P\left(X = k\right)= p^k \left(1-p\right)^{1-k},\quad k=0,1 P(X=k)=pk(1p)1k,k=0,1
期望
E [ X ] = p E\left[X\right] = p E[X]=p
方差
D [ X ] = p − p 2 = p ( 1 − p ) D\left[X\right] = p - p^2 = p\left(1-p\right) D[X]=pp2=p(1p)

二项分布

二项分布是 n n n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为 p p p
记作 X ∼ B ( n , p ) X \sim B\left(n,p\right) XB(n,p)
P ( X = k ) = C n k p k q n − k , k = 0 , 1 , 2 ⋯   , n P\left(X= k\right) = C_n^k p^k q^{n-k},\quad k=0,1,2\cdots,n P(X=k)=Cnkpkqnk,k=0,1,2,n
期望
E [ X ] = n p E\left[X\right] = np E[X]=np
推导
E [ X ] = ∑ k = 0 n k n ! k ! ( n − k ) ! p k q n − k = ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k q n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 q n − k = n p ∑ k = 0 n − 1 ( n − 1 ) ! k ! ( n − k − 1 ) ! p k q n − 1 − k = n p ( p + q ) n − 1 = n p \begin{aligned} E\left[X\right] &=\sum_{k=0}^n k \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\ &=\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\ &=np\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\\ &=np\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\\ &=np\left(p + q\right)^{n-1}\\ &=np \end{aligned} E[X]=k=0nkk!(nk)!n!pkqnk=k=1n(k1)!(nk)!n!pkqnk=npk=1n(k1)!(nk)!(n1)!pk1qnk=npk=0n1k!(nk1)!(n1)!pkqn1k=np(p+q)n1=np
方差
D [ X ] = n p q D\left[X\right]=npq D[X]=npq
推导
E [ X 2 ] = ∑ k = 0 n k 2 n ! k ! ( n − k ) ! p k q n − k = ∑ k = 1 n k n ! ( k − 1 ) ! ( n − k ) ! p k q n − k = ( ∑ k = 2 n n ! ( k − 2 ) ! ( n − k ) ! p k q n − k ) + ( ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k q n − k ) = n ( n − 1 ) p 2 ( ∑ k = 2 n ( n − 2 ) ! ( k − 2 ) ! ( n − k ) ! p k − 2 q n − k ) + n p ( ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 q n − k ) = n ( n − 1 ) p 2 ( ∑ k = 0 n − 2 ( n − 2 ) ! k ! ( n − k − 2 ) ! p k q n − 2 − k ) + n p ( ∑ k = 0 n − 1 ( n − 1 ) ! k ! ( n − k − 1 ) ! p k q n − 1 − k ) = n ( n − 1 ) p 2 + n p = n 2 p 2 + n p q \begin{aligned} E\left[X^2\right] &=\sum_{k=0}^n k^2 \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\ &=\sum_{k=1}^n k \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\ &=\left(\sum_{k=2}^n \frac{n!}{\left(k-2\right)!\left(n-k\right)!}p^k q^{n-k}\right)+\left(\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\right)\\ &=n\left(n-1\right)p^2\left(\sum_{k=2}^n \frac{\left(n-2\right)!}{\left(k-2\right)!\left(n-k\right)!}p^{k-2} q^{n-k}\right)+np\left(\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\right)\\ &=n\left(n-1\right)p^2\left(\sum_{k=0}^{n-2} \frac{\left(n-2\right)!}{k!\left(n-k-2\right)!}p^{k} q^{n-2-k}\right)+np\left(\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\right)\\ &=n\left(n-1\right)p^2 + np\\ &=n^2p^2 + npq \end{aligned} E[X2]=k=0nk2k!(nk)!n!pkqnk=k=1nk(k1)!(nk)!n!pkqnk=(k=2n(k2)!(nk)!n!pkqnk)+(k=1n(k1)!(nk)!n!pkqnk)=n(n1)p2(k=2n(k2)!(nk)!(n2)!pk2qnk)+np(k=1n(k1)!(nk)!(n1)!pk1qnk)=n(n1)p2(k=0n2k!(nk2)!(n2)!pkqn2k)+np(k=0n1k!(nk1)!(n1)!pkqn1k)=n(n1)p2+np=n2p2+npq
因此
D [ X ] = n 2 p 2 + n p q − n 2 p 2 = n p q D\left[X\right] = n^2p^2 + npq - n^2p^2 = npq D[X]=n2p2+npqn2p2=npq

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值